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ABSTRACT 

Numerical modeling has been a very effective tool for the simulation of structural 

systems. Modeling helps engineers and designers to make important predictions about the 

behavior of the system during simulated loading events. Decisions in structural 

engineering are most of the time based on the results from numerical simulations, 

especially during retrofit where numerical modeling is most of the time required. 

However, numerical idealizations of existing structural systems do not match the actual 

structure. Several authors acknowledge that the reason behind this mismatch between the 

behavior of numerical models and the actual systems are due to assumptions in the 

modeling process and uncertainty in the model parameters. Model updating strategies can 

be used to reduce the uncertainty in the numerical model, resulting in more meaningful 

results from structural analysis. 

Several researchers report the performance of model updating strategies in terms 

of the error between numerical and experimental data after the updating strategy has been 

implemented, but little work has been done in evaluating the physical meaning of the 

updated parameters and the capabilities of the numerical model to predict the behavior of 

the structure after the system has been modified (i.e. retrofit analysis). Furthermore, 

researchers have acknowledged that model updating can lead to non-unique problems, 

and propose techniques to identify potential solutions to the model updating problem. 

However, it is not clear how to select the appropriate solution from a family of solutions. 
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The work described here proposes a methodology for the evaluation of a family of 

solutions within a probabilistic framework. The methodology proposes a mean for an 

analyst to incorporate his/her expertise as a probabilistic expression that can be 

incorporated in the model updating process. Solutions with high probability are more 

probable to have meaningful parameters. Finally, a benchmark problem is formulated to 

aid the comparison of model updating techniques that acknowledge the existence of 

multiple solutions. 
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CHAPTER 1. INTRODUCTION

Structural Engineers rely on the power of computers and numerical models for the design 

of new structures and the retrofit of old structures. Techniques such as finite elements are 

a standard practice to estimate the behavior of a structure for its design.  During the 

analysis process the engineer makes reasonable assumptions about the strength of the 

materials, stiffness, geometry, etc. which leads to an economical design. The evaluation 

of the performance of an existing structure is different. The engineer does not have the 

freedom to “set” the parameters of the structure.  Rather, the engineer should investigate 

and approximate the values for these parameters based on the actual system.   

Numerical modeling is not a trivial task however. In a general sense, every 

property defining a numerical model such as the cross sectional area of an element, the 

mass density of a material or the flexural capacity of a beam element is intrinsically 

computed with a measure of uncertainty. Based on this argument, it can be expected that 

deterministic numerical models provide a limited representation of a real system. For 

instance, limitations when modeling real structures arise in the modeling of tapered 

beams (Bradford and Cuk 1988), curved elements (Brownjohn and Xia 2000), composite 

sections (Karimi, Tait et al. 2011), or partially restrained conditions (Baeza and Ouyang 

2011). Usually, these types of problems require having a very dense numerical model 

attempting to capture the main characteristics of the system and thus paying an expensive 

computational cost to improve the accuracy of the results.  
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In the field of model updating it is common to measure the discrepancies between 

the system and the numerical model through the error between outputs of a numerical 

analysis and experimental measurements, such as natural frequencies and/or mode 

shapes. For instance, (Zhang, Chang et al. 2001) modeled the Kap Shui Mun cable stayed 

bridge in Hong Kong and reported the discrepancies found as in Table 1.1:  

Table 1.1. Selected modes for model updating (Zhang, Chang et al. 2001) 

 

Measured (Hz) Computed (Hz) Error

1 First vertical bending of deck V1 0.39 0.41 5.1%

2 Second vertical bending of deck V2 0.66 0.58 -12.1%

3 Third vertical bending of deck V3 1.07 0.93 -13.1%

4 Fourth vertical bending of deck V4 1.54 1.51 -1.9%

5 Fifth vertical bending of deck V5 1.81 1.74 -3.9%

6 First lateral bending of deck L1 0.49 0.49 0.0%

7 Second lateral bending of deck L2 1.25 1.15 -8.0%

8 Third lateral bending of deck L3 2.12 2.45 15.6%

9 First torsional mode of deck T1 0.83 0.77 -7.2%

10 Second torsional mode of deck T2 1.39 1.62 16.5%

11 Third torsional mode of deck T3 1.9 2.18 14.7%

12 First swaying of Lantau tower LTS1 0.63 0.57 -9.5%

13 First torsion of Lantau tower LTT1 1.34 1.48 10.4%

14 First bending of Lantau tower LTB1 2.2 1.96 -10.9%

15 First torsion of Ma Wan tower MWT1 1.61 1.89 17.4%

16 First swaying of Ma Wan tower MWS1 1.78 1.64 -7.9%

17 First bending of Ma Wan tower MWB1 2.03 2.01 -1.0%

Vibration Mode

 

The goal of model updating methodologies is to take a “raw” model and 

experimental measurements to produce a better representation of the real structure. One 

of the predominant challenges with structural model updating is that experimental data 

tends to be a scarce resource, mostly due to economical restrictions. Updated models can 

be used for a significant number of subsequent analyses such as earthquake response 

estimation or retrofit analysis. For instance, (Ren, Lin et al. 2007) updated the numerical 

model of the Qingzhou cable-stayed bridge over the Ming River in China. The updating 
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variables considered were the tension forces in the cable elements in order to emulate the 

mid-span static deformation of the structure. Once they achieved the objective, several 

truck-loading cases were simulated and evaluated on site, reporting the computed stresses 

in Table 1.2 computed from the composite deck shown in Figure 1.1: 

 
Figure 1.1. Equivalent section of steel-concrete composite deck  

at mid-span of Qingzhou Cable Stayed Bridge (units in meters) 

Table 1.2. Measured and calculated stresses of composite deck (Ren, Lin et al. 2007) 

 

Point #
Position from 

centroid [m]

Calculated 

stress [MPa]

Measured 

stress [MPa]

1 -0.057 -1.28 2.52

2 0.143 3.21 -

3 -0.057 -1.28 3.36

4 2.063 46.30 68.30

5 2.343 52.58 67.40

6 2.343 52.58 66.40

7 2.343 52.58 65.70

8 1.103 24.75 42.80
 

It can be said then, that model updating is a discipline that doesn’t simply look for 

fitting structural parameters into the available experimental data, but as a disciplines that 

looks to obtain sets of values for the updating parameters which reduce the uncertainty 

and thus reduce the uncertainty in the response of the results of numerical analysis.  
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1.1. MODEL UPDATING METHODOLOGIES 

Model updating methodologies can be classified as deterministic or non-

deterministic. Deterministic methodologies do not consider the updating parameters as 

variables with uncertainty associated but as deterministic values that are not known. 

These types of methodologies use optimization algorithms to minimize the error between 

experimental measurements and analytical results. However, most of the time, the 

experimental information is incomplete, and a limited number of sensors are installed. 

The error function can only be calculated using experimental data from sensors that 

match appropriate degrees of freedom in the model. 

It has been shown by Udwadia and Sharma (1978) and Udwadia (1985) that the 

incompleteness of experimental information leads to non-uniqueness on the solution to 

the minimization problem. Franco et al. (2006) also discuss this point. Furthermore, 

Zarate and Caicedo (2008) indicate that a local minima can provide a more meaningful 

representation than the global minima. New model updating approaches have been 

recently developed acknowledging these challenges (Zarate and Caicedo 2008; Caicedo 

and Zarate 2011).  

1.1.1. DETERMINISTIC METHODOLOGIES 

Deterministic model updating methodologies don not consider uncertainty in the 

model parameters. The focus of deterministic methodologies is then the minimization of 

an objective function that typically quantifies the error between experimental and 

numerical data. Most of these techniques require an optimization methodology or some 

type of iterations to produce a solution. Other methodologies, called direct 
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methodologies, use the experimental information and identification algorithms to directly 

obtain the values for the updating parameters (Tarantola 2002).  

Model updating problems in structural engineering are usually complex because 

of the large number of parameters. It is common to use sensitivity analysis to select 

significant updating variables and reduce the complexity of the problem. For instance, 

(Brownjohn and Xia 2000) used sensitivity analysis to correct selected parameters on the 

Safti Link cable stayed bridge in Singapore (Table 1.3).  

Table 1.3. Correlation between updated FEA and EMA (Brownjohn and Xia 2000) 

 

Number 

(1)

fFEA (Hz) 

(2)

fEMA (Hz) 

(3)

Df (%) 

(4)

MAC 

(5)

Mode Shape        

(6)

1 1.14 1.18 -3.67 97.80 First bending

2 2.62 2.76 -4.89 96.30 Second bending 

3 3.29 3.59 -8.36 97.10 First torsion

4 4.18 4.61 -9.36 90.80 Third bending

5 5.86 6.10 -4.00 91.90 Second torsion

6 6.60 7.00 -5.70 84.70 Fourth bending

7 8.70 9.10 -4.38 91.40 Third torsion
 

Other deterministic methodologies are derived from evolutionary algorithms. 

These types of methodologies emulate the social behavior of individuals in which 

portions of the population succeed in a given objective, such as reproduction or 

identification of promising areas. Example of these are the Genetic Algorithm –GA- 

(Goldberg 1989) and Particle Swarm Optimization (Eberhart and Kennedy 1995). These 

evolutionary algorithms have been widely studied, and some authors have specialized 

them for the search of both global and local minima. For instance, (Zechman and 

Ranjithan 2004) propose the modification of the GA allowing the branching of the 

evolutive solutions. Other examples are given by (Venter and Sobieszczanski-Sobieski 

2003; Parrott and Xiaodong 2006), who use in favor of the search of local minima, the 
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jamming that particle swarm methodologies usually present as issue. A typical flowchart 

of a GA algorithm is shown in Figure 1.2. 

 
 

Figure 1.2. Typical GA flowchart 
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Other types of deterministic methodologies have arisen from decision making 

activities, where complex models and incomplete information are used. For instance, 

Modeling to Generate Alternatives –MGA- developed by (Brill, Chang et al. 1982) as a 

human-machine decision-making system for land use planning. An implementation of 

MGA is presented by (Zarate and Caicedo 2008), where they proposed the search of 

other minima by pushing the optimization towards an area perpendicular to the current 

minima found. The subject of study is the Bill Emerson Memorial cable-stayed bridge in 

Missouri, USA. They use 6 updating parameters in order to reduce the complexity of the 

problem, finding 4 alternative solutions (Table 1.4 and Table 1.5), concluding in the need 

of an analyst expertise for the selection of the “best” solution.  

Table 1.4. Model updating alternatives (Zarate and Caicedo 2008) 

 

Loc 1 Loc 2 Loc 3 Bent Tower

Original 0.00 0.00 0.00 0.00 0.00 0.00 0.524

p1 0.00 -5.00 -5.00 5.00 100.00 27.36 0.375

p2 0.00 0.00 0.00 0.00 99.73 0.00 0.451

p3 -4.74 0.00 0.00 0.00 0.00 0.00 0.492

p4 0.00 0.00 0.00 0.00 0.00 100.00 0.495

Mass %
Inertia %

Stiffness %
f (p)Solution

 
 

Table 1.5. Dynamic characteristics of the model updating alternatives  

(Zarate and Caicedo 2008) 

 

(f id,1,f fe,1) (f id,2,f fe,2) (f id,3,f fe,3) (f id,4,f fe,4)

Exp. 0.32 0.41 0.63 0.71 - - - -

Original 0.29 0.39 0.60 0.63 4.9 5.4 3.1 10.4

1 0.31 0.41 0.61 0.63 4.3 5.9 4.1 7.5

2 0.31 0.4 0.61 0.63 4.3 6.1 3.9 10.8

3 0.3 0.4 0.62 0.63 4.4 6 5.1 14.6

4 0.3 0.4 0.61 0.63 4.7 5.6 3.5 10.1

100*(1-MAC)
Solution w1 (Hz) w2 (Hz) w3 (Hz) w4 (Hz)
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The challenges associated with objective functions with multiple solutions are not 

limited to the computational cost.  Finding multiple alternatives to update a model leaves 

the engineer with the task to decide what model (or models) to use in subsequent 

analysis, especially because modeling errors, low sensor density and other aspects could 

indicate that local minima of the error function might have a better physical 

representation than the global minima (Zarate and Caicedo 2008; Zarate 2009; Caicedo 

and Zarate 2011). For example, which of the models presented in Table 1.4 and Table 1.5 

should be used for an earthquake retrofit analysis? 

1.1.2. NON-DETERMINISTIC MODEL UPDATING METHODOLOGIES 

Non-deterministic model updating considers uncertainty in the parameters. Some 

approaches describe the uncertainty in probabilistic terms (Beck and Katafygiotis 1998), 

others describe it through interval arithmetic (Madarshahian, Caicedo et al. 2013), and 

others use statistical measures of dispersion to describe the variability of the updating 

parameters. The description of this variability is very useful when compared to 

deterministic methodologies, given that it provides a mean for the evaluation of the 

uncertainty of the results.  

Non-deterministic methodologies following a probabilistic approach are mostly 

based on Bayes’ inference. Formally, this methodology uses conditional probabilities to 

express the frequency on which a given event occurs. In model updating, the probability 

of a given parameter is seen as a degree of belief based on prior information instead. This 

means that an analyst can express his/hers degree of believe about a given model 

parameter in terms of a probability distribution. The Bayes’ theorem provides the mean to 

update this prior belief when new evidence is obtained. This probabilistic approach has 
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gained a lot of popularity due its capacity to handle uncertainty in ill-conditioned, non-

unique problems. The seminal papers by (Beck and Katafygiotis 1998) provide the 

foundation for the implementation of this type of approaches. 

Examples of Bayesian model updating can be found in (Vanik, Beck et al. 2000; 

Beck and Au 2002; Marwala and Sibisi 2005; Cheung and Beck 2009). For example, 

Marwala et al. (2005) updated the elastic modulus of a simply supported (25.4mm x 

13.4mm x 1.0m) aluminum beam. The reported results from the implementation of the 

Bayesian updating are shown in Table 1.6: 

Table 1.6. Experimental and numerical natural frequencies in Marwala et al. (2005) 

 

Mode
Experimental 

fn (Hz)

Initial FEM 

fn (Hz)

Average updated 

FEM fn (Hz)

Standard 

Deviation (Hz)

1 64 70 67 2.8

2 184 193 183 7.6

3 389 379 360 16.1

4 599 628 590 28.7

5 898 942 893 76.4
 

The robustness of this methodology is examined by (Vanik, Beck et al. 2000; 

Beck and Au 2002; Cheung and Beck 2009). In the work of Cheung and Beck (2009), a 

10-story building is simulated subject to earthquake excitation where the acceleration 

records are contaminated with noise. As shown in Table 1.7, a great level of confidence 

in the identification of the modal characteristics of the simulated system was achieved. 

Low sensor density has also an effect in Bayesian based techniques. Caicedo and 

Zarate (2011) showed that the posterior PDF of the stiffness of a 2 DOF structure could 

result in two areas of high probability (Figure 1.3a). A combination of MGA (Brill, 

Chang et al. 1982) and GA was used to automatically find these areas. 
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Table 1.7. Experimental and Numerical modal parameters (Cheung and Beck 2009) 

 

Natural 

frequency 

(Hz)

Damping 

ratio (%)

Natural 

frequency (Hz) 

and Covariance

Damping ratio 

(%) and 

Covariance

1 0.735 0.92 0.734 (0.2%) 0.85 (8.0%)

2 2.158 2.71 2.149 (0.3%) 2.60 (7.1%)

3 3.562 4.45 3.600 (0.7%) 4.03 (9.5%)

4 4.891 6.03 4.878 (0.8%) 5.83 (8.6%)

5 6.047 7.65 6.022 (1.8%) 7.33 (8.8%)

6 7.106 9.11 7.214 (2.3%) 8.42 (10.1%)

7 8.049 10.13 7.990 (2.4%) 9.17 (11.5%)

8 8.62 11.11 8.828 (2.7%) 9.56 (13.1%)

9 9.306 11.58 9.661 (3.2%) 9.60 (13.5%)

10 9.631 11.92 10.519 (4.5%) 9.26 (15.5%)

Updated ModelExperimental Data

Mode

 
 

 
 

Figure 1.3. Posterior PDF with 4 experimental records (Caicedo and Zarate 2011) 

The paper also discusses that the analyst can learn from knowing the existence of 

these areas of high probability and better define the prior PDF. Figure 1.3b shows the 

result of the updating after the analyst has considered the two areas of high probability. 

Finally, other non-deterministic approaches are the Maximum Entropy (Adhikari 

and Friswell 2004),  Bootstrapping (Goller, Pradlwarter et al. 2009) interval methods, 

fuzzy logic and random fields (Fonseca 2005). 
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1.2. MODEL PERFORMANCE EVALUATION METHODOLOGIES 

One question of interest for structural engineers is: “What model should I use for 

a particular analysis?” There is no methodology widely accepted to measure the 

performance of numerical models in structural engineering. The purpose of model 

updating methodologies is to reduce the uncertainty in the numerical model in order to 

have a greater confidence on analytical results used for design, retrofit and other 

purposes. Model updating can have limited success if experimental data does not fully 

describe the system. The reason behind this issue can be explained partially, because a 

successful evaluation of the performance of numerical models would require an 

expensive experimental program where structural systems are tested a number of times. 

However, it is the best that can be done given the available data. When data is cheap to be 

collected is easier to evaluate numerical models, as it happens with areas such as water 

resources (e.g. precipitation records), who appear to have matured faster than structural 

engineering on the evaluation of model performance.  

Methodologies for model performance evaluation developed in the water 

resources area involve statistical measures (Fox 1981; Willmott 1982) and other criteria 

based on statistical information for the quantification of the discrepancies between 

numerical and experimental output (Baranyi, Pin et al. 1999; Moriasi, Arnold et al. 2007). 

Responses of the numerical models are also compared to experimental data using least 

squares algorithm, a typical methodology used in model fitting. As presented by Matott, 

Babendreier et al. (2009), Table 1.8 summarizes typical methodologies used for model 

evaluation by water resources engineers. 
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Table 1.8. Quantitative methods for model evaluation 

 

Method Purpose of method Subclassifications

Data Analysis (DA)
to evaluate or summarize input, response, or 

model output data

time series, population, 

geospatial

Identifiability 

Analysis (IA)

to expose inadequacies in the data or suggest 

improvements in the model structure
temporal, behavioral, spatial

Parameter 

Estimation (PE)

to quantify uncertain model parameters using 

model simulations and available response data
single solution, multiple solution

Uncertainty Analysis 

(UA)

to quantify output uncertainty by propagating 

sources of uncertainty through the model

sampling methods, 

approximation methods

Sensitivity Analysis to determine which inputs are most significant screening, local, global

Multimodel Analysis 

(MMA)

to evaluate model uncertainty or generate 

ensemble predictions via consideration of multiple 

plausible models

quantitative, qualitative

Bayesian Networks to combine prior distributions of uncertainty with hierarchical Bayesian,
 

Arguably, only UA and MMA truly evaluate the performance of a model, while 

other methods are used for model updating. For instance, UA propagates uncertainty in 

numerical models and characterizes the uncertainty distribution in the response of the 

system. Such characterization is usually performed in terms of a probability distribution 

or in by statistical means (Tsai 1987; Tsai and Franceschini 2005; Helton, Johnson et al. 

2006). In structural engineering, such methodology is used instead to perform model 

updating (Muhanna, Zhang et al. 2007). Similarly, MMA is a methodology used to 

evaluate problems that can be modeled using different types of approaches. The 

methodology basically assigns scores to the evaluated models given a specific scenario, 

where the scoring gives a ranking to the models (Burnham and Anderson 2002). (Link 

and Weiland 2009) use this methodology to evaluate damage detection in structures, 

where different stages of damage require a different model and thus, a boundary defining 

such stages is obtained through MMA. 

Model updating presents a different approach to determine if a model is 

appropriate. Model comparison using Bayes’ inference (Box and Tiao 2011) provides a 
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method to contrast the probability of two or more models. One of the advantages of using 

Bayes is that the technique considers overfitting. Models with many parameters usually 

have a lower probability than those with many parameters, unless the experimental data 

fits well a model with several parameters. 

1.3. CHALLENGES IN MODEL UPDATING 

Several are the challenges for any model updating methodology. Remarkable 

advances made in computational power and modeling techniques have motivated 

researcher in all type of areas to enhance models to improve the representation of 

physical systems. Nonetheless, model updating problems are still very complex, and 

some deficiencies still need further research, such as the visualization of systems with 

multiple parameters. Several of these challenges are the motivation for this research.  

1.3.1. UNCERTAINTY AND MODELING ERRORS 

The development of numerical methods for the discrete representation of physical 

systems, usually represented by differential equations, is a first step in the modeling of a 

physical system such as a structure. Every physical quantity can be measured with a 

degree of uncertainty. This variability in the updating parameters of a model updating 

problem can’t be avoided, and under estimations of such variability can lead to an 

inaccurate representation of the system behavior (Lam 1998; Sanayei, Wadia-Fascetti et 

al. 2001). 

In structural engineering in particular, the representation of the connections 

between elements and/or supporting conditions is a source of modeling errors. For 

instance, in a structural analysis it is common to represent foundations systems as rigid 

bodies, when reality shows that foundations might have small deformations and/or 
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rotations, depending on the type of foundation and its conditions. Other example is the 

consideration of lateral-bracing elements in buildings as axial (truss) elements, while 

such perfect condition is hardly found in real structures. 

Modeling errors can also arise from a poor spatial characterization of the real 

structure. Most of times, numerical models are developed from structural drawings. This 

type of modeling error, for example, affects the effective length of elements and thus, 

their mechanical properties. Similarly, curved and/or tapered structural elements also 

contribute to the challenge of creating a good numerical representation of the real system. 

Other common modeling error is the lack of knowledge about the stress state of 

structural elements once they are in static equilibrium. Pre-stressed beams, cracked 

concrete sections, tensioned cables, and concentration of stresses due to irregularities 

during construction and assemblage of the structure are also factors playing an important 

role and usually they are not considered (and almost impossible to determine) before a 

numerical model is developed. 

1.3.2. LOW SENSOR DENSITY 

Good experimental data is crucial to perform model updating in a real structure. 

However, it becomes difficult to achieve this objective, given that most of the time the 

structure of interest is very complex. For instance, an analyst can be interested in 

performing a reliability analysis on an existing bridge. A numerical model for such 

structure will easily have a large amount of degrees of freedom. The resources required to 

perform a full instrumentation and experimentally measure all the degrees of freedom can 

make it an impractical procedure. For these reasons, only key locations are instrumented 

and data from these locations is used later to interpolate the behavior at non-instrumented 



www.manaraa.com

15 

locations. This low-sensor density is a common denominator in projects involving 

analysis of existing structures. Just in very few cases of modern structures, the project 

considers an extensive instrumentation of the structure for a continuous monitoring of 

several phenomena of interest, such as the Tsing Ma Bridge in Hong Kong (Wong 2007) 

with a total of 1723 sensors (Figure 1.4). 

 
 

Figure 1.4. Layout of sensory system on Tsing Ma Bridge (Wong 2007) 

1.3.3. MULTIVARIATE PROBLEMS 

Model updating of structural systems are usually complex problems due to the 

large amount of degrees of freedom and model variables. Numerical simulation of real 

structures requires numerical models with physical meaning to be considered useful for 

studies such as retrofit analysis. Consider for instance the representation of a 2-story 

shear building as depicted in Figure 1.5: 
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Figure 1.5. Conceptual representation of a 2-story shear building 

The model to be updated typically consists of four random variables (two masses 

and two stiffness). The problem can get even more complicated, if the analyst decides to 

replace the constrained support by a spring system, whose stiffness values would increase 

the number of variables. The analyst can also consider damping, potentially increasing 

the number of variables by two. The situation depicted before shows that a simple model 

updating problem usually will be a computationally expensive multivariate problem.  

1.3.4. VISUALIZATION 

In the same way a model updating problem becomes complex as the number of 

variables increase, other challenge arises from this multivariate condition. This is, the 

visualization of the feasible space or variables for a solution or group of solutions. 

Regular visualization techniques offer great visualization tools when dealing with 1 or 2 

variables. Dealing with more than 2 variables is a complex task, and usually the 

methodologies used to provide an insight of these problems condense the information, 

making it difficult to interpret. For instance, Figure 1.6 below depicts a hypercube in 4 

dimensions, printed on a 2-dimensional space. An analyst should be trained in how to 

interpret these graphs and make conclusions based on the results of model updating 

problems. 

STRUCTURAL DYNAMICS AND INTELLIGENT INFRASTRUCTURE

UNIVERSITY OF SOUTH CAROLINA29
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m2
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Figure 1.6. Conceptual representation of a hyper-cube (4D) 

1.4. MODEL UPDATING COGNITIVE SYSTEMS: MUCOGS 

Caicedo and Zarate  (2011) proposed MUCogS based on the need of creating 

models of existing structures with physically meaningful parameters. MUCogS states that 

due to the uncertainty associated with numerical models and low spatial sensor density, 

local minima found in a model updating process can provide a more accurate physical 

meaning than the global minimum. In a probabilistic sense this means that some areas of 

the solution space can provide more physically meaningful parameters than other areas 

with higher probability. 

MUCogS has been thought as a framework with a computational core that makes 

use of computational resources and with a human/computer interface that allows 

experienced users to incorporate their knowledge in the analysis. These capabilities allow 

MUCogS to consider problems with many updating variables that are computationally 

demanding. 

So far, MUCogS has incorporated several techniques that have been modified to 

make possible the search for local minima in optimization problems, such as GA and 

MGA. The goal of MUCogS is to develop a framework for a cooperative human-
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computer model updating system, increasing and developing critical thinking skills in 

analysts in the search for updated models with physical meaning, and obtaining 

meaningful models. However, MUCogS is still under development, and lacks of a 

methodology that incorporates the analyst expertise into the model selection task. This 

research focuses in this particular area. 

 
 

Figure 1.7. MUCogS (Model Updating Cognitive Systems) conceptual scheme 

1.5. RESEARCH CONTRIBUTION 

The contribution of the proposed research is to offer a technique to select 

appropriate solutions and models based on the analyst knowledge about the behavior of 

the structure. To this end, the contribution of this research can be described in the 

following items: 

 Develop a methodology to select solutions based on the analyst knowledge about 

the behavior of the structure. 



www.manaraa.com

19 

 Develop a methodology to select models from a family of models, using the 

analyst knowledge about the behavior of the structure. 

 Implement the technique within the MUCogS framework 

The technique is based on Bayes’ inference but unlike prior work on this area, the analyst 

expresses their knowledge in terms of the behavior of the structure in addition to the 

value of the parameters. 
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CHAPTER 2. VISUALIZATION TOOLS

The graphical representation of data sets has always been a mean to help interpret any 

kind of phenomena from a statistical point of view. For instance, the collection of data 

points relating the applied force and the resulting deformation of a linear mass-spring 

system allows engineers to estimate the constants that characterize such linear system by 

applying correlation techniques derived from statistical tools. The inclusion of a graphical 

representation of the data points and their statistical properties is a common –almost 

mandatory- requirement for a valid scientific documentation of such type of 

experimentation (orthographic x-y representation in this case) for a better understanding 

of the phenomena under analysis. 

From an engineering point of view the use of graphical representations is critical, 

especially during the recent years when the computational power has dramatically 

increased, providing engineers with powerful resources for data collection and data 

analysis. An example where graphical representations are required in engineering is 

found in the mechanics of materials, where a uniaxial deformation test on a given 

material requires the collection of applied force and deformation data, and the Cartesian 

representation (Figure 2.1) of these data points help in the characterization of the material 

given loading conditions. 
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Figure 2.1. Typical stress-strain curve in ductile materials  

(https://en.wikipedia.org/wiki/Deformation_(engineering)) 

However, Cartesian X-Y representations are limited tools for engineering areas 

dealing with multiple parameters. It is common to have multivariate problems in most of 

engineering areas, such as Water Resources, Operation Research or Structural 

Engineering, where several parameters are subject of optimization and/or analysis. The 

interpretation of data in such cases becomes very abstract as the degree of complexity 

increases, and the visual representation of the data becomes a challenging task.  

The challenges presented by multivariate problems have been boarded by several 

authors who have proposed tools for the synthesis of multivariate data (Wong and 

Bergeron 1997; Estrada 2011). The proposed tools attempt to extract important features, 

helping the analyst with the recognition of patterns and/or giving the analyst information 

about the behavior of the used variables. The capability of the visualization tool for 

synthetizing important data is key in order to provide a good insight into the multivariate 

data.  

https://en.wikipedia.org/wiki/Deformation_(engineering)
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2.1. SHORT REVIEW OF MULTIVARIATE VISUALIZATION TECHNIQUES 

The following sections provide an overview of different methods for multivariate 

visualization. These tools are used in later chapters to provide a graphical representation 

of the updated models. 

2.1.1. PARALLEL COORDINATES 

One of the common tools for multivariate visualization is the parallel coordinates 

technique (Inselberg and Dimsdale 1991). Parallel coordinates “map” an N-Dimensional 

set of points into an X-Y plane by replicating the Y-axis N times, each one labeled 

accordingly (commonly, each axis is labeled as x1, x2, …, xN) all perpendicular to and 

equidistant along the X-axis. A point C with coordinates (c1, c2, … , cN) is represented by 

the polygonal line intersecting the replicated axis x1, x2, …, xN. This technique is very 

powerful, in the sense that theoretically, the number of dimensions that can be mapped 

into the X-Y plane is infinite. Figure 2.2 displays the parallel coordinates plot of 20 

random numbers in a 10-dimensional space. 

 
Figure 2.2. Parallel coordinates plot  
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2.1.2. SCATTERPLOT MATRIX 

The scatterplot methodology is a visualization technique used to inspect samples 

taken from a multivariate function. The technique creates a matrix pairing all variables 

(x1 vs. x2, x1 vs. x3, …, xn-1 vs. xn) allowing the identification of patterns within each 

variable’s data distribution. This tool is useful when using sampling methods such as the 

Markov Chains, where it is important to track the distribution of the samples. The 

methodology is also useful in the identification of data clustering. An example of this 

technique is shown in Figure 2.3, where samples from a function with 3 variables are 

plotted, showing minima at [x1 x2 x3] = [0 0 0] and [x1 x2 x3] = [1 1 1]. 

 
Figure 2.3. Scatterplot matrix  
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2.1.3. RADIAL VISUALIZATION: RADVIZ 

Radviz uses the Euclidean X-Y-Z space, eliminating the orthogonality of the X-Y 

plane to fit as many dimensions as needed (Sharko, Grinstein et al. 2008), and using the 

Z-axis to represent values of f(x). Formally, Radviz converts to X-Y coordinates any N-

dimensional array: 

   
(∑                  )

∑             
    

(∑                  )

∑             
 i=1,…,N 

This type of representation is useful for the visual exploration of local minima of 

a function, if a vicinity of points is plotted simultaneously. However, the radial 

visualization forces to several points to share the same X-Y space, as it would happen 

with the points [0,0,…,0] and [1,1,…,1] which will share the same X-Y point. Figure 2.4 

uses Radviz to represent the point [2 3 4 6 3]: 

 
 

Figure 2.4. Radviz representation of X = [2 3 4 6 3] 

2.1.4. MULTIVARIATE SECTION CUT 

The multivariate section cut concept is derived from the idea of a straight line 

crossing a 2D or 3D space. This idea can be extended to an N-D space, clarifying the 
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shape of the function f(X) along the points defined by the hyper-line. This technique is 

useful in optimization processes, where the peaks of the function are of interest, as it 

happens with model updating methodologies. The hyper-line defining the section cut uses 

the vector addition rule, as  

Rx = Ro+*u12 

Where Ro denotes the position of the starting point, u12 is a unitary vector 

defining the position of the ending point relative to the starting point, and  represents the 

desired spacing between connecting points. The plotting of the values Rx vs. f(X) 

generates the multivariate section cut. Figure 2.5 describes the Radviz representation of a 

4-dimensional problem. Figure 2.6 uses multivariate section cuts between selected points 

in Figure 2.5 for the identification of local minima. 

 
Figure 2.5. Selected Radviz points from 4D optimization problem 
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Figure 2.6. Multivariate section cut between selected points from 4D problem 

The previous figures illustrate the usefulness of the Radviz and Multivariate 

section cut for optimization problems, where inspection of local minima is needed. 
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CHAPTER 3. BEHAVIORAL SELECTION TECHNIQUE

The main contribution of this research is to offer a technique that allows an analyst to 

incorporate his/her expertise into the model updating process. In traditional Bayes’ model 

updating this is performed by specifying a prior PDF of the parameters. However, the 

analyst knowledge of the structure is arguably on its behavior and not the value of the 

parameters. For example, a bridge engineer might not have prior knowledge about the 

equivalent stiffness of a bridge temperature join for a 20 years old bridge and joints 

partially filled with debris. However, the engineer might be able to estimate the 

deflection for a particular load based on prior experience with load/deflection tests 

performed in similar bridges. This is even more important if we acknowledged the fact 

that model updating problems can lead to several solutions. An analyst can evaluate 

which solution is more probable, and the incorporation of his/her expertise can 

substantially change the results of the analysis. For example, in Zarate and Caicedo  

(2008) a numerical model of the Bill Emerson Memorial Bridge is updated. The problem 

considered 6 updating parameters, which represented the mass of the deck, the rotational 

stiffness of the deck-tower connection, and the moment of inertia of the spine beam. The 

model updating procedure obtained four solutions (Table 1.4), each one physically 

different. The first solution reduces 5% the mass at 2 locations and increases the moment 

of inertia of the deck by 5%, the second solution increases 99.73% the stiffness at the 

deck’s bent, the third solution reduces the mass by 4.74% at location 1, and the fourth 

solution doubles the stiffness at the tower. The question at hand is: which of these 
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solutions an analyst should use for subsequent analysis? and: how can we enable the 

analyst to use their prior knowledge? 

The success of MUCogS as a framework for model updating highly depends on 

its abilities to guide the analyst in the search of solutions in the updating process. 

However, identifying which model is more appropriate representation of the structure has 

not been studied in detail. Given that prior information about particular parameters of the 

model could be difficult to identify, the proposed technique uses the behavior of the 

structure to help the analyst identify appropriate models. A suitable way to incorporate 

the expertise criterion can be as follows: 

 The analyst defines a test from which a virtual response can be expressed. The 

analyst should have enough expertise to select an appropriate test for the structure 

in consideration. For example load tests on bridges if the person has prior 

experience with these procedures. 

 The analyst expresses the expected behavior of the structure to the given test as a 

“virtual” response (i.e., no test is actually run) 

 The probability of each model and solution is calculated given the expected 

behavior of the structure. 

 Plausible solutions are sorted based on their calculated probabilities. 

Structural engineers can accumulate knowledge from the repetitive process of 

structural testing. This cumulated knowledge let them “feel” the structure behavior, and 

most of times, let them successfully anticipate the response of a structural system to a 

given loading situation. For instance, modern seismic design codes require structures to 

not to exceed a determined amount of lateral deformation, usually expressed as a lateral 

drift ratio. Experienced engineers can make estimations about such parameters on a given 
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structural system by using visual inspections only. Depending on the type of structural 

system, this specific situation may be different. For instance, it makes sense to consider 

lateral drifts in buildings and mid-span deflections in bridges. This concept is illustrated 

in Figure 3.1. 

 
3.1. EXPECTED STRUCTURAL BEHAVIOR 

The analyst expertise can be expressed in three different ways: i) a deterministic 

number, ii) a probability density function (PDF), and iii) an interval.  A deterministic 

number might not be suitable because it does not allow expressing uncertainty. For 

example, consider inter-story drift in a multistory building. In this work it does not make 

sense to express the expected inter-story drift as 1/100 but as a value with uncertainty. 

The inter-story drift can be expressed as a normal distribution with mean 1/100 and 

standard deviation of 1/500 for example. It could also be expressed as an interval, for 

instance as [1/90 1/110] of the floor’s height. The same can be done with a wide variety 

of parameters. In the case of earthquake excitation the analyst can express for example, 




max

: ? 

Virtual test 
Expected structural 

behavior 

Analyst’s Virtual 

Response 

Figure 3.1. Analyst’s Expertise  
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base shear force, maximum roof displacement, etc. This work focuses in the case when 

prior knowledge is specified as a PDF. 

For instance, consider the 2 DOF model discussed in Caicedo and Zarate (2011) 

(Figure 3.2).  The 2-story steel structure has a total height of 980mm and a floor area of 

305x108 mm
2
.  The mass of each floor was measured as 710g and 860g for the first and 

second floor respectively. The reported average natural frequencies are 2.08Hz and 

5.82Hz. Caicedo and Zarate (2011) considered the stiffness of both floors as parameters 

for updating.  These two parameters were updated using the MUCogS framework. In the 

paper, Caicedo and Zarate reported two solutions from the updated PDF corresponding to 

peaks of maximum posterior located at [k1 k2]= [358 390] N/m and [k1 k2] = [714 196] 

N/m (Figure 3.2). The probability of each solution can be approximated by analyzing the 

surrounding area of every peak of maximum probability. 

 
Figure 3.2. 2-DOF system (Caicedo and Zarate 2011) 

 

a. Actual system b. System idealization 
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Figure 3.3. Reported solutions and their approximated area of influence  

(Caicedo and Zarate 2011) 

In Figure 3.3 the two solutions seem to have similar probabilities, but a closer 

look to the structure (Figure 3.2a) indicates that one of them is more likely than the other 

because the floors appear to have similar stiffness (the two floors look the same). An 

analyst can use this information and decide to use one of the areas of high probability for 

their model. However, model selection is more complicated in larger systems, where the 

structure might not be easy to inspect and many parameters are updated. Therefore, a 

systematic way of evaluating these solutions is needed.  

For example, the expertise of an undergraduate student with no knowledge about 

this research was used to estimate the displacement of the structure under a hypothetical 

loading case of 1.57 N (0.36 lb.) and 3.82 N (0.86 lb.) located at the first and second 

floors of the structure shown in Figure 3.2. The undergrad has worked with the structure 

before and has a reasonable experience about the behavior of the system, estimating the 
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relative displacement range as [3.6 25.7] mm for the first floor, and [3.6 25.7] mm  for 

the second floor. A uniform interval was assumed between the provided interval (Figure 

3.4a). Figure 3.4b shows the probability of the stiffness given the expressed behavior. 

 

3.2. PROBABILITY OF SOLUTIONS GIVEN EXPECTED BEHAVIOR 

The techniques to describe the probability distribution of the updating parameters 

in a numerical model have been widely studied. The work by (Beck and Katafygiotis 

1998) provide the foundation for the implementation of this Bayesian approach. Other 

researchers have further developed these ideas to include them in areas such as Structural 

Health Monitoring (SHM) (Vanik, Beck et al. 2000), Structural Reliability 

(Papadimitriou, Beck et al. 2001) or Damage Detection (Yuen 2010). Bayes’ theorem is 

(Ang, Tang et al. 2007): 

 (  | )  
 ( |  ) (  )
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where Ei represents any given event with associated probability P(Ei) (prior 

knowledge of Ei). Conceptually, Bayes’ Theorem can be seen as a mean to update this 
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Figure 3.4. Expertise virtual response for 2D structure 
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probability when another event A provides new evidence about event Ei. P(Ei|A) is the 

probability of event Ei given the new evidence A (posterior knowledge of Ei), and the 

quotient P(A|Ei)/P(A) represents the support of event A provided for event Ei.  Given that 

event Ei can have multiple states (true or false for instance), the total probability theorem 

can be used to represent P(A) as a normalization constant letting the  Bayes’ theorem to 

be re-written as 

 (  | )  
 ( |  ) (  )

∑ ( |  ) (  )
 

In a model updating context, the prior knowledge of structural parameters () can 

be represented using probability distributions. When new evidence (D) about the 

structural parameters of the system is available, the Bayes’ theorem updates this prior 

knowledge, and a posterior probability distribution of the structural parameters is 

obtained. The Bayes’ theorem is usually expressed using the following equation (Vanik, 

Beck et al. 2000): 

 ( | )     ( | ) ( ) 

where 

    ∫ ( | ) ( )   

Figure 3.5 describes the Bayes’ concept: 
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Figure 3.5. Conceptual representation of Bayes’ theorem 

3.2.1. PRIOR DISTRIBUTION: P() 

The prior distribution P() is the degree of belief on the parameters . When an 

initial estimation on the distribution of  is difficult to establish, it is valid to consider a 

uniform probability distribution g(), within a parameter range. This uniform distribution 

expresses vague or general information about , and it is commonly called a non-

informative prior. The selection of non-informative priors is common practice in 

Bayesian methodologies (Kass and Wasserman 1996) and can be expressed as 

 ( )     
 

∏(             )
                    

 ( )       otherwise 

where  ( ) is determined by the lower and upper boundaries of the parameters, 

lower  is the lower bound of the parameters and upper is upper bound of the parameters. 
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3.2.2. LIKELIHOOD DISTRIBUTION: P(D|) 

Likelihood distributions in Bayesian Model Updating express the probability of 

experimentally obtained data D given a set of parameters . Commonly, the likelihood is 

defined as a Normal distribution: 

 (   )  
 

√  | ( )|
     ( 

 

 
|
 (   )

 ( )
|

 

) 

In the previous expression,  (   ) denotes the error between the experimental 

parameters  and the experimental measurements of such parameters, D, and  ( ) 

denotes the standard deviation of such error. According to the maximum entropy 

principle, a Gaussian distribution imposes the minimal structural constraint within the 

specified moments (,) and thus, has maximum entropy among all distributions with 

specified mean  and standard deviation . One practical way of expressing  (   ) 

using modal parameters is 

 (   )  
 

  
    ( 

 

 
∑|

  
     

  ( )

  
      |

  

   

 
 

 
∑∑|

    
       

  ( )

    
      

|

  

   

 

   

) 

Where, n is the number of identified modes of vibration, m is the number of 

modal coordinates,   
   is the j-th identified natural frequency,   

  ( ) is the j-th natural 

frequency of the finite element model,     
   is the i-th modal coordinate of the j-th 

identified mode shape,     
  ( ) is the i-th modal coordinate of the j-th mode shape of the 

finite element,   
       is the standard deviation of the error of the j-th identified natural 

frequency and     
      

 is the standard deviation of the error of the i-th modal coordinate 



www.manaraa.com

36 

that corresponds to the j-th identified mode shape. The PDF is normalized with the 

constant c1 which yields to 

   ∫    ( 
 

 
∑|

  
     

  ( )
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|
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3.2.3. POSTERIOR DISTRIBUTION: P(|D) 

The posterior distribution P(|D) represents the updated probability distribution of 

the structural parameters  given the experimental data D. The general expression for it 

has been defined as 

 ( | )     ( | ) ( ) 

The research documented in this Dissertation considers the prior knowledge of 

parameters  as a non-informative prior as described in 3.2.1, and the distribution of the 

supporting evidence D as described in 3.2.2. Under these assumptions, P(|D) can be 

written as 

 (   )             ( 
 

 
∑|

  
     

  ( )

  
      |

  

   

 
 

 
∑∑|

    
       

  ( )

    
      

|

  

   

 

   

) 

                  

 ( | )     otherwise 

Here, similar to the previous expression P(D|), the PDF requires a normalization 

constant c equivalent to the integral of P(|D) over the domain of . After simplifications, 

they yield to  
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3.3. MODEL PROBABILITY 

Consider that the structural parameters  belong to a class of models M, and that a 

subset of parameters  belong to some region Si() defining a particular optimal model 

Mi representing the physical system (Beck and Katafygiotis 1998). Then the optimal 

regions Si can be called solutions of the model updating problem with an associated 

posterior probability P(Si|D), and can be compared, under the assumed correctness of M 

(Jaynes 2003): 

 (  |   )  
 ( |     )

 ( | )
 (  |  )  

 ( |     )

∫  ( |    ) ( |  )  
 (  |  ) 

Given that a single model class M exists, the probabilities of each model Mi 

defined by the region Si() can be calculated without the need to compute the 

normalization constant of P(|D). For instance, the probability of the model Mk can be 

chosen as reference, and odd ratios can be used to compare models: 

 (  |   )

 (  |   )
 

 ( |     )
 ( | )

 (  |  )

 ( |     )
 ( | )

 (  |  )
 
 ( |     ) (  |  )

 ( |     ) (  |  )
 

The same expression applies for different model classes M = {M 1, M 2, …, M k}.  
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3.4. EXPERTISE CRITERION: “VIRTUAL RESPONSE” 

The virtual response expressing the analyst’s experience (VR) can be included in 

the Bayesian analysis as shown in Figure 3.6: 

 
 

Figure 3.6. Conceptual representation of Bayes’ theorem for 3 events 

The probability of three events A, B and C is commutable. This is (Ang, Tang et 

al. 2007),  

 (   )   (   ) 

From conditional probability properties, the probability of the intersected events 

is computed as  

 (  )   ( | ) ( ) 

Then, the probability of the intersection of three events can be written as 

 ( |  ) ( | ) ( )   ( |  ) ( | ) ( ) 

 ( |  )   ( |  )
 ( | ) ( )

 ( | ) ( )
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The expression to the right of  ( |  ) can be reordered: 

 ( |  )   ( |  )
 (  )

 (  )
 

The intersected events are commuted one more time: 

 ( |  )   ( |  )
 (  )

 (  )
 

Finally, the intersected events are expressed in terms of the conditional 

probability: 

 ( |  )   ( |  )
 ( | ) ( )

 ( | ) ( )
  ( |  )

 ( | )

 ( | )
 

Then the Bayes’ Theorem for three events A, B and C can be written as  

 ( |  )  
 ( |  ) ( | )

 ( | )
 

By analogy, the expression in terms of θ, D and VR is 

 ( |   )  
 (  |  ) ( | )

 ( |  )
 

where P(θ|D) is the posterior distribution of the parameters θ. This expression is 

expanded in terms of the likelihood and prior distribution as 

 ( |   )  
 (  |  ) ( | ) ( )

 ( |  ) (  )
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Finally, assuming that the events VR and D are independent, given that the 

analysts can provide VR before experimental data is obtained,  

 ( |   )  
 (  | ) ( | ) ( )

 ( ) (  )
 

Given that the denominator serves as normalization constant, the Bayes’ Theorem 

including virtual responses can be written as follows:  

 ( |   )     (  | ) ( | ) ( ) 

This expression can be used to calculate the odds ratios between the probability of 

models:  

 (  |      )  
 (  |    ) ( |    ) (  | )

 ( | ) (  | )
 

 (  |      )

 (  |      )
 
 (  |     ) ( |     ) (  | )

 (  |     ) ( |     ) (  | )
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CHAPTER 4. BENCHMARK STRUCTURE

The Model Updating Cognitive Systems (MUCogS) has been designed as a framework 

for the implementation of model updating methodologies, in order to provide the analyst 

with updated models capable of representing a real system with physically meaningful 

parameters. Since MUCogS is a framework and not a particular methodology, it is 

expected that many techniques can be used within the framework. For example (Caicedo 

and Yun 2010) proposed an evolutionary approach to identify multiple solutions in a 

deterministic model updating context. Zarate and Caicedo (2007) proposed a 

methodology based in Modeling to Generate Alternatives (MGA) to obtain plausible 

solutions in the updating of complex numerical models. It is difficult to compare the 

performance of these techniques if they are applied to different structures. One alternative 

is to use the ASCE benchmark problem, but this benchmark was not designed to address 

the problem of multiple solutions. The modal data from the ASCE problem is very 

standard for a shear building and the models are relatively simple, not leading to the 

existence of multiple solutions in the updating problem.  

This chapter proposes to develop a benchmark problem that can be used to 

compare methodologies that deal with the selection of multiple solutions. The Structural 

Dynamics and Intelligent Infrastructure (SDII) research group at the University of South 

Carolina designed and constructed a modular test structure, whose simplicity for 

modeling, instrumentation and characterization serves for the formulation of the 

benchmark problem (Figure 4.1).  
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Figure 4.1. SDII test structure 

Experimental information of the test structure is made available through the 

characterization of its dynamic properties. Modal identification is performed by acquiring 

input force/output acceleration data from impact tests. The identification is repeated after 

modifying the system by adding a mass of 8.68Kg to one of the nodes. The proposed 

metrics for the comparison of methodologies use the modal properties of the modified 

system, emulating a “structural retrofit” situation, useful to evaluate the quality of the 

predicted behavior of the selected models.  

Finally, it is expected that the benchmark problem encourages other researchers to 

recognize multiple alternatives in model updating, helping in the development of 

methodologies for the integration of the human expertise.  

4.1. TEST STRUCTURE DESCRIPTION 

The test structure is a 4x4 grid (x-y plane) of beam elements supported at the 

corners. The supports are made of 5/16” thick plates with mounted bearings allowing 

rotation in the x-direction only. The structure is 2.49m long (y-direction) and 1.21m wide 
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(x-direction). The grid consists of cold rolled steel tubes (DOM 1.25”x0.188”) 

interconnected with 2.5”x2.5x2.5” 1018 cold-rolled steel cubes, internally threaded and 

connected with 1" threaded rods. A plan drawing is shown in Figure 4.2, and information 

about geometrical and material properties is presented in Table 4.1. 

 

Table 4.1. Test structure properties 

 

# X [m] Y [m] # X [m] Y [m] Section Nodes

1 0.000 0.000 9 0.806 0.000 Area 406 mm
2 1,4,13,16 2.98 kg

2 0.000 0.830 10 0.806 0.830 Ixx 3864 mm
4 2,3,14,15 3.13 kg

3 0.000 1.660 11 0.806 1.660 Iyy 3864 mm
4 5,8,9,12 3.13 kg

4 0.000 2.490 12 0.806 2.490 J 7729 mm
4

6,7,10,11 3.59 kg

5 0.403 0.000 13 1.209 0.000 Material

6 0.403 0.830 14 1.209 0.830 E 199.9 Gpa

7 0.403 1.660 15 1.209 1.660 r 7890 kg/m
3

8 0.403 2.490 16 1.209 2.490 n 0.3 -

Cold rolled steel

Node Coordinates Additional Mass

Lumped Mass

Node Coordinates Beam Elements

DOM 1.25x0.188

 

Figure 4.2. Test structure plan drawing 
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4.2. EXPERIMENTAL TESTING 

The acquisition of experimental data from the test structure consists of input 

force/output accelerations using one impact hammer and 8 accelerometers. Two different 

test configurations are used to obtain modal information from all 16 nodes of the 

structure. Accelerometers were attached to nodes 3, 4, 7, 8, 11, 12, 15 and 16 for the first 

type of test and attached to nodes 1, 2, 5, 6, 9, 10, 13 and 14 for the second type of test. 

Complete modal data is obtained by combining both types of test. Data files are collected 

using three National Instruments NI-9234 acquisition moduli mounted on a NI cDAQ 

9174 chassis with a predefined internal sampling frequency of 1652 Hz. Details about the 

accelerometers and DAQ are presented in Table 4.2 and Table 4.3. 

Time responses are recorded from all channels with duration of 20 seconds. A 

total of 10 records from impacts at nodes 6, 9 and 11 are collected. Every record consists 

of three equally spaced impacts at the same location. Figure 4.3 shows a representative 

response from all channels due to impact at node #6. 

Table 4.2. Sensor data 

 

 
 

 

 

 

Ch. Sensor Type Model S/N Sensitivity Range (1) Range (2)
Resonant 

Freq.

1 Accelerometer PCB 333B50 LW51385 1019 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

2 Accelerometer PCB 333B50 39381 1019 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

3 Accelerometer PCB 333B50 LW51250 1019 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

4 Accelerometer PCB 333B50 LW51384 995 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

5 Accelerometer PCB 333B50 40787 1035 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

6 Accelerometer PCB 333B50 LW51249 982 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

7 Accelerometer PCB 333B50 40789 1054 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

8 Accelerometer PCB 333B50 40790 1062 mV/g ±0.5g pk 0.5 to 3000 Hz ³ 20kHz

9 Impact Hammer PCB 086C03 23410 2.33 mV/N ±2224N pk - ³ 22kHz
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Table 4.3. DAQ configuration 

 

Test 1 Test 2

1 3 2

2 4 1

3 7 6

4 8 5

5 11 10

6 12 9

7 15 14

8 16 13

NodesAcquisition 

Module
Module Type Model S/N Channels

1

Analog signal acquisition, 

4 input channels, ±5 V, 

51.2 kS/s per Channel, 

24-Bit IEPE

NI-9234 1822140

2

Analog signal acquisition, 

4 input channels, ±5 V, 

51.2 kS/s per Channel, 

24-Bit IEPE

NI-9234 1822138

6,9,113

Analog signal acquisition, 

4 input channels, ±5 V, 

51.2 kS/s per Channel, 

24-Bit IEPE

NI-9234 14626CF 9 6,9,11

 

4.3. MODAL IDENTIFICATION 

Given that both input and output experimental data is available, the transfer 

function between force and acceleration is estimated using Matlab. The transfer functions 

are calculated using default values estimated by Matlab (8192 points in the Fourier 

transform, overlap of 3670 points and a total of 7 windows for this case). The 

Eigensystem Realization Algorithm (ERA) is used to perform modal identification (Juang 

and Pappa 1985). ERA requires Impulse Response Functions (IRF), which can be 

obtained as the inverse Fourier Transform (ifft) of the averaged transfer functions 

(Bendat and Piersol 2000). The estimated IRFs have a sampling rate of 1652Hz and are 

down-sampled to 200Hz prior to identification. Resampling focuses modal identification 

to modes under 100 Hz. Figure 4.3 and Figure 4.4 are representative figures of the 

procedure used for the identification of IRFs. A full set of used data is found in Appendix 

A. 
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Figure 4.3. Typical time response from impact hammer testing 

(Hammer impact at node 6, acceleration response from node 3) 

Figure 4.4. Averaged Transfer Function and IRF from node 3 

(Test #1, impact at node 6, 10 acceleration records for averaging) 
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Natural frequencies, damping ratios and mode shapes are estimated using ERA. 

The size of the Hankel matrix is varied in order to develop a stabilization diagram and 

identify stable modes. A rule of thumb for the setup is to make the number of columns 

equal to 4 times the number of poles and the number of rows to be equal to 8 times the 

number of columns (Caicedo 2011). With this is mind, a stabilization diagram is 

calculated changing the number of poles from 6 to 66 (Figure A.10, Figure A.11 and 

Figure A.12). The identification is completed with a subroutine for the elimination of 

modes with unrealistic frequencies and/or damping ratios (i.e. negative damping). 

Vibration modes identified by ERA and identified as stable poles in the 

stabilization diagram are grouped and averaged according to their similarity, measured by 

the Modal Assurance Criteria (MAC) (Allemang 2003) and their frequency. The MAC is 

required to be greater than 0.95 and the tolerance in natural frequencies is set to a 

maximum of 2%. Prior to averaging, mode shapes are normalized respect to the same 

modal coordinate, corresponding to the coordinate with highest value. The results are 

presented in Table 4.4. This generates duplicated modes in modes 6 and 7, modes 8 and 

9, and modes 10 and 11. 

Table 4.4. Identified natural frequencies and damping ratios 

 

# Count fn [Hz] fn [Hz] z % z [%] # Count fn [Hz] fn [Hz] z % z [%]

1 63 7.37 0.02 1.45 0.43 9 21 45.75 0.03 0.46 0.03

2 60 16.19 0.10 1.04 0.61 10 18 65.88 0.40 4.10 0.61

3 86 22.79 0.07 0.86 0.25 11 102 66.44 0.22 0.62 0.23

4 68 25.31 0.06 0.67 0.24 12 41 79.36 0.33 0.72 0.21

5 90 36.02 0.08 0.38 0.08 13 20 80.76 0.18 0.83 0.17

6 60 39.69 0.08 0.44 0.16 14 72 83.44 0.20 1.20 0.30

7 24 39.76 0.14 0.57 0.32 15 36 85.68 0.29 0.76 0.16

8 95 45.51 0.22 0.80 0.37 16 88 95.80 0.31 0.77 0.29
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The mode shapes shown in Figure 4.5 and Figure 4.6, and the natural frequencies 

in Table 4.4 indicate that the identified modes 6 and 7 correspond to the same mode and 

therefore, the averaged natural frequencies and mode shapes are used for any subsequent 

analysis. The same applies for modes 8 and 9, and modes 10 and 11. Finally, it is unclear 

if modes 12 through 16 correspond to actual modes. Peaks for modes up to 67Hz are 

sharp in the transfer functions plots (Figure A.10, Figure A.11 and Figure A.12), while 

modes over 67Hz are not. This is unlikely due to a lack of excitation at these frequencies 

because the Fourier Transform of the hammer impact is almost constant in this frequency 

range, as shown in Figure A.1 through Figure A.6. In any case, modes above 67 Hz are 

considered not reliable and discarded from any subsequent analysis (Table 4.5, Table 4.6 

and Table 4.7). 

Table 4.5. Reported results from modal identification 

 

# fn [Hz] fn [Hz] z % z [%]

1 7.37 0.02 1.45 0.43

2 16.19 0.10 1.04 0.61

3 22.79 0.07 0.86 0.25

4 25.31 0.06 0.67 0.24

5 36.02 0.08 0.38 0.08

6 39.71 0.10 0.47 0.22

7 45.55 0.20 0.74 0.33

8 66.44 0.22 0.62 0.23
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Table 4.6. Identified Modal Coordinates 

 

1 2 3 4 5 6 7 8

1 0.043 0.022 -0.139 0.121 -0.091 0.059 0.103 -0.070

2 0.840 0.925 -0.302 -0.384 0.837 0.738 0.677 -0.652

3 0.935 1.000 0.488 -0.369 -0.974 -0.865 1.000 0.905

4 0.047 0.039 0.232 0.185 0.131 -0.134 0.270 0.373

5 0.137 0.019 -0.863 0.804 -0.760 0.128 0.498 -0.200

6 0.911 0.325 -0.577 0.142 0.484 0.255 -0.638 0.675

7 1.000 0.372 0.675 0.205 -0.660 -0.316 -0.875 -0.847

8 0.164 -0.029 1.000 1.000 0.990 -0.150 0.664 0.411

9 0.139 -0.014 -0.849 0.797 -0.747 0.027 0.505 -0.284

10 0.886 -0.332 -0.566 0.124 0.409 -0.356 -0.533 0.455

11 0.999 -0.354 0.640 0.177 -0.554 0.416 -0.878 -0.922

12 0.158 -0.037 0.979 0.989 1.000 0.002 0.610 0.225

13 0.043 -0.012 -0.167 0.146 -0.126 -0.031 0.102 -0.087

14 0.821 -0.916 -0.313 -0.379 0.578 -0.844 0.606 -0.581

15 0.901 -0.998 0.445 -0.379 -0.707 1.000 0.965 1.000

16 0.039 -0.024 0.177 0.161 0.152 0.070 0.152 0.129

Node #
Mode

 
 

Table 4.7. Standard deviation for identified modal coordinates 

 

1 2 3 4 5 6 7 8

1 0.019 0.016 0.040 0.033 0.038 0.021 0.048 0.035

2 0.283 0.156 0.113 0.084 0.337 0.200 0.293 0.260

3 0.052 0.000 0.069 0.035 0.044 0.032 0.000 0.039

4 0.027 0.058 0.037 0.026 0.042 0.034 0.089 0.087

5 0.105 0.089 0.205 0.199 0.285 0.057 0.221 0.097

6 0.301 0.104 0.167 0.066 0.197 0.088 0.242 0.280

7 0.084 0.080 0.081 0.054 0.061 0.045 0.084 0.052

8 0.032 0.061 0.000 0.000 0.029 0.029 0.051 0.027

9 0.128 0.078 0.205 0.175 0.294 0.040 0.212 0.121

10 0.293 0.082 0.139 0.061 0.165 0.108 0.225 0.190

11 0.000 0.069 0.054 0.048 0.040 0.031 0.051 0.025

12 0.038 0.046 0.030 0.025 0.000 0.031 0.066 0.051

13 0.036 0.033 0.039 0.037 0.049 0.017 0.048 0.038

14 0.261 0.168 0.087 0.083 0.242 0.245 0.215 0.249

15 0.064 0.047 0.082 0.042 0.044 0.000 0.094 0.000

16 0.012 0.016 0.010 0.009 0.006 0.010 0.021 0.020

Node #
Mode
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Figure 4.5. Identified modes (1
st
 through 8

th
) 
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Figure 4.6. Identified modes (9
th

 through 16
 th

) 
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Figure 4.7. Numerical mode shapes (1
st
 to 8

th
) 
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Figure 4.8. Numerical mode shapes (9
th

 to 16
th

) 
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4.4. RAW MODEL COMPARISON 

An initial numerical model using the information provided in 4.1 is created in 

Matlab. This model does a good job representing the experimental modes 1, 2, 6, and 8. 

The maximum error of the natural frequencies for these modes is 6.69% (4.44 Hz for 

mode 8) with a MAC value of 0.758 (lowest MAC value of the group). However, the 

numerical model does a poor job representing the other modes. This can be explained by 

modeling errors, for example in the supporting conditions (pinned in this case). Also, the 

values of the lumped masses at the nodes are uncertain. Table 4.8 shows a summary of 

the comparison between selected numerical modes and the reported identified modes. 

Table 4.8. Error and MAC values between selected modes 
 

Hz. %

1 7.370 1 7.634 0.264 3.58% 0.987 Exp. Mode reproduced

2 16.189 2 16.407 0.218 1.34% 0.998 Exp. Mode reproduced

3 22.794 3 22.272 -0.522 -2.29% 0.009 Horizontal Mode (Numerical)

3 22.794 4 29.726 6.932 30.41% 0.489

4 25.314 4 29.726 4.411 17.43% 0.001

5 36.019 5 40.066 4.047 11.24% 0.011

6 39.714 5 40.066 0.352 0.89% 0.979 Exp. Mode reproduced

6 39.714 6 42.825 3.111 7.83% 0.001

6 39.714 7 43.786 4.072 10.25% 0.001 Horizontal Mode (Numerical)

7 45.551 7 43.786 -1.766 -3.88% 0.614 Horizontal Mode (Numerical)

7 45.551 8 56.104 10.553 23.17% 0.103 Horizontal Mode (Numerical)

7 45.551 9 58.559 13.008 28.56% 0.004

8 66.441 9 58.559 -7.882 -11.86% 0.126

8 66.441 10 62.375 -4.067 -6.12% 0.006

8 66.441 11 70.885 4.444 6.69% 0.758 Exp. Mode fairly reproduced

8 66.441 12 99.127 32.686 49.20% 0.006

Experimental Numerical Error in wn
Observation

wn (Hz) wn (Hz)
MAC

 

4.5. MODAL IDENTIFICATION WITH ADDED MASS 

The performance of the updated model is investigated by changing the numerical 

model and the experimental structure and comparing their dynamic behavior. This 
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mimics the case of a retrofit analysis (for example). The test structure is changed by 

adding a lumped mass at one of its nodes. Three steel plates with dimensions 200mm x 

200mm x 10mm weighting a total of 8.680.01 Kg are attached to node 6. The mass is 

securely attached such that it would not rattle on the structure and would not add any 

stiffness to the connection. The modal identification procedure described in the previous 

section is repeated in identical conditions.  

 
 

Figure 4.9. Attached mass of 8.680.01 Kg to node 6 

 

Table 4.9. Natural frequencies and damping ratios of the modified system 

 

# fn [Hz]  fn [Hz] z % z [%]

1 6.78 0.03 1.23 0.55

2 16.11 0.19 1.16 0.48

3 21.63 0.09 0.58 0.22

4 25.16 0.10 0.52 0.11

5 34.66 0.08 0.33 0.23

6 39.22 0.08 0.39 0.13

7 42.92 0.12 0.49 0.42

8 61.15 0.14 0.58 0.17
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Table 4.10. Experimental modal coordinates of modified system 

 

1 2 3 4 5 6 7 8

1 0.038 -0.008 0.176 0.124 0.143 -0.043 0.100 0.048

2 1.085 -0.877 0.015 -0.512 -0.600 -0.365 1.000 1.000

3 0.970 -0.803 -0.709 -0.360 0.867 0.549 0.184 -0.705

4 0.044 0.002 -0.144 0.196 -0.086 0.112 0.103 -0.185

5 0.193 -0.041 1.000 0.787 0.971 -0.124 0.414 0.117

6 1.152 -0.336 0.583 0.108 -0.449 -0.197 -0.285 -0.472

7 1.000 -0.255 -0.653 0.205 0.460 0.091 -0.454 0.507

8 0.152 0.075 -0.621 0.996 -0.605 0.257 0.347 -0.256

9 0.223 -0.072 0.992 0.776 1.000 -0.011 0.406 0.281

10 1.115 0.389 0.607 0.056 -0.217 0.412 -0.319 -0.041

11 0.988 0.421 -0.523 0.197 0.259 -0.417 -0.312 0.608

12 0.145 0.060 -0.605 1.000 -0.639 0.160 0.347 -0.165

13 0.084 0.019 0.180 0.135 0.177 0.030 0.077 0.084

14 0.992 1.000 0.294 -0.477 -0.228 1.000 0.390 0.441

15 0.903 1.001 -0.348 -0.332 0.315 -0.729 0.464 -0.684

16 0.034 0.015 -0.114 0.165 -0.107 -0.017 0.081 -0.074

Node #
Mode

 
 

Table 4.11. Standard deviation of modal coordinates of the modified system 

 

1 2 3 4 5 6 7 8

1 0.025 0.025 0.008 0.026 0.008 0.007 0.012 0.013

2 0.298 0.069 0.043 0.109 0.066 0.038 0.000 0.000

3 0.074 0.162 0.120 0.035 0.129 0.061 0.048 0.311

4 0.028 0.038 0.046 0.022 0.025 0.028 0.037 0.121

5 0.092 0.089 0.000 0.166 0.027 0.026 0.051 0.044

6 0.305 0.072 0.036 0.048 0.032 0.028 0.021 0.023

7 0.000 0.069 0.113 0.033 0.085 0.036 0.101 0.221

8 0.039 0.035 0.120 0.021 0.098 0.033 0.080 0.118

9 0.075 0.110 0.030 0.165 0.000 0.025 0.035 0.039

10 0.290 0.055 0.038 0.033 0.039 0.030 0.031 0.042

11 0.101 0.052 0.091 0.030 0.068 0.047 0.075 0.273

12 0.042 0.044 0.114 0.000 0.102 0.029 0.081 0.074

13 0.059 0.080 0.010 0.031 0.006 0.006 0.008 0.014

14 0.269 0.000 0.049 0.110 0.062 0.000 0.042 0.044

15 0.045 0.169 0.074 0.047 0.062 0.083 0.105 0.307

16 0.013 0.021 0.023 0.005 0.019 0.012 0.021 0.036

Node #
Mode
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4.6. METRICS 

Metrics are established to compare different model updating methodologies. The 

modal identification of the modified system performed in 4.5 reports 8 available natural 

frequencies and their modal shapes. The metrics proposed here intend to measure how 

well model updating solutions predict the 8 modal parameters of the modified system 

(modal parameters identified in 4.5) by measuring the error in natural frequencies, and 

the error of the mode shapes. 

It is important to point here that regardless the methodology used for model 

updating, a criteria for matching experimental and numerical modes has to be defined. In 

this document, pairs of numerical/experimental modes are defined as those modes 

Figure 4.10. Identified modes for modified system  
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matching with a maximum allowed error in natural frequencies (MaxErr) of 5Hz and 

minimum MAC values (MinMac) of at least 0.8. If the updating methodology disregards 

the modes outside these constrains, the metrics must be computed considering the values 

of MaxErr and MinMac for the unpaired modes. Under this definition, the error in natural 

frequencies and the error in mode shapes are measured as 

   (  )  |   
          

    
         | 

   ( )       (  
          

   
         )  

4.6.1. METRICS 1, 2 AND 3 

Metrics 1, 2 and 3 will compare the computed error in natural frequencies. Metric 

#1 will measure the mean value, the metric #2 will measure the standard deviation, and 

the metric #3 will measure the skewness of such error. Mathematically, the metrics are 

expressed as: 
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4.6.2. METRICS 4, 5 AND 6 

Metrics 4, 5 and 6 will compare the computed error in mode shapes expressed in 

terms of MAC values. Similar with the previous, metric #4 will measure the mean value, 
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the metric #5 will measure the standard deviation, and the metric #6 will measure the 

skewness of such error. Mathematically, the metrics are expressed as: 
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4.6.3. METRIC #7 

The last proposed metric measures the number of unpaired modes (modes which 

do not fit within the constrains defined by MaxErr and MinMac). As closer to zero, this 

metrics expresses a better prediction of the modal parameters of the modified system: 

              

In the previous, k expresses the number of modes matching the pairing constrains. 
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CHAPTER 5. APPLICATIONS

The proposed methodology in chapter 3 is verified in this chapter. Four numerical models 

are used to solve the benchmark problem described in chapter 4. The first case considers 

only 2 independent variables allowing visualization of the solution space. Cases 2, 3 and 

4 use models with more variables. The family of models is considered to determine the 

probability of the models and each solution.  

5.1. SOURCES OF UNCERTAINTY 

The modal identification performed on the test structure (Chapter 4) shows 

dynamic characteristics that do not match those obtained with the raw numerical model. 

The differences between the model and the actual structure are due to assumptions made 

during the modeling of the structure. These assumptions can be modeling errors (e.g. 

assuming an Euler-Bernoulli model when a Timoshenko model is more appropriate) or 

incorrect value of parameters of the model. The numerical model described in chapter 4 

considers a structure made of beam elements ideally connected at each node. The 

structure is shown in Figure 4.2 and is repeated in Figure 5.1 for convenience. In practice, 

these ideal connections do not exist, given that the tubular sections are connected by 

threaded bars, giving the connection finite stiffness. As a result, other modeling error are 

introduced: i) the underestimation of the effective length of elements, critical parameter 

given that this term is a common denominator in all terms of the stiffness matrix of beam 

elements, ii) underestimation of lumped mass at the nodes and iii) modeling of the 
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supports at nodes 1, 4, 13 and 16 which are modeled as pinned connections that allow 

rotation along the x-axis. In reality, the structure is connected to the supports with a 5/16” 

bolt to a ball bearing attached to a stiff plate. A stiff spring restraining the vertical and 

lateral deformations and a soft spring restraining rotations in the x-direction could be a 

better model.  

 

The physical dimension of the structure (Figure 5.1) can be used to estimate the 

initial values of the numerical model. The material is steel, whose Young Modulus is 

widely accepted in the literature as 29000ksi (199.9 MPa). Threaded bars with diameter 

1” extend approximately 10cm beyond every node, and have an approximate moment of 

inertia Ixx = Iyy = 20431 mm
4
 (EI=4084.3 N*m

2
) and contribute an approximate mass of 

Figure 5.1. Test structure plan drawing 
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3.13Kg to nodes with 3 connected elements and 3.59Kg to nodes with 4 connected 

elements (estimated threaded rod mass plus 2.5”x2.5”x2.5” steel cube connection). The 

effective length of the elements is taken as 0.403m and 0.830m for elements in the x-axis 

and y-axis respectively. The vertical and rotational stiffness of the supports is assumed to 

be 5% of the contributed stiffness at these degrees of freedom by the connected beam 

elements (78914 N/m and 2599 N/rad respectively). These estimations have a degree of 

uncertainty and their value is updated. Table 5.1 contains a summary of all the parameters 

considered and an original deterministic estimation. Not all parameters are considered in 

all models. For example, the model used for case #1 only uses parameters 3 and 4, while 

the model used in case #2 uses the parameters 2, 3, 4, 5, 7 and 8. 

Table 5.1. Updating parameters for study cases 

 

# Parameter Elements affected
Initial estimated 

value
Feasible Range

1 EI 24 beam elements 7724.1 N*m^2 [ -50%  +50% ]

2 Lef, shorter elements 12 beam elements 0.403 m [ -50%  +0% ]

3 Lef, longer elements 12 beam elements 0.83 m [ -50%  +0% ]

4
kuz, supports vertical 

deformation stiffness
4 supporting nodes 78914 N/m [ -100%  +5900% ]

5
kx, supports longitudinal 

rotation stiffness
4 supporting nodes 2599 N/rad [ -100%  +900% ]

6
ky, supports transversal 

rotation stiffness
4 supporting nodes 4191 N/rad [ -100%  +9900% ]

7
lm3, lumped mass at 3-

element connection
8 connections 3.13 kg [ -50%  +50% ]

8
lm4, lumped mass at 4-

element connection
4 connections 3.59 kg [ -50%  +50% ]

9
EI, nodes crossed by 

threaded bar
16 nodes 7724.1 N*m^2 [ -95%  +50% ]

10
EI, nodes not crossed by 

threaded bar, x-dir

16 nodes (16 th'd. bar-

node connections)
7724.1 N*m^2 [ -95%  +50% ]

11
EI, nodes not crossed by 

threaded bar, y-dir

16 nodes (4 th'd. bar-

node connections)
7724.1 N*m^2 [ -95%  +50% ]

12
EI, nodes not crossed by 

threaded bar, supports

4 nodes (Supporting 

nodes)
7724.1 N*m^2 [ -95%  +50% ]
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5.2. FINDING MULTIPLE SOLUTIONS 

The posterior PDF, assuming that a feasible range of the parameters is known, is 

defined by the equation 

 ( | )       ( 
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The calculation of P(|D) considers only vibration modes whose absolute 

difference with the experimental natural frequencies are not greater than 5Hz and whose 

MAC values are greater than 0.8. The output modal coordinates are mass normalized and 

reduced to a maximum number of 16 modal coordinates by using Guyan reduction, in 

order to be consistent with the available experimental data. The parameters  are also 

normalized respect to their initial estimated value (Table 5.1) in such a way that 

parameters are unitless. The “raw” model state corresponds then to the position  = o = 

[1 1 …. 1].  

The search for solutions (as defined in section 3.3) is performed by using a 

modified Genetic Algorithm (HTMGA) specialized for the search of multiple solutions. 

HTMGA finds local and global maxima of P(|D). HTMGA is an optimization 

methodology modified and implemented as part of MUCogS by other members of the 

SDII research group (http://sdii.ce.sc.edu/htmga). This methodology is based on Genetic 

Algorithms, where random samples across the solution space simulate individuals whose 

chances for survival are determined by their fitness values.  

http://sdii.ce.sc.edu/htmga
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5.3. CASE STUDY #1 

Case study #1 considers a numerical model composed of 24 beam elements 

connected with 16 nodes, 16 lumped masses at the nodes and supports modeled as 

springs (rotation in x-direction and deformation in z-direction only). The two parameters 

to be updated are the stiffness of the modeled supports (kuz, kx). This 2D case allows the 

visualization of P(|D) and P(|D,VR). Figure 5.2 illustrates this numerical model. 

 
Figure 5.2. Numerical model for Case study #1  

Table 5.2 shows the solutions found by HTMGA and the associated probabilities 

after integrating around each maxima:  

Table 5.2. Model updating results for case study #1 

 

# kuz/(kuz)o kx / (kx)o kuz [N/m] kx [N/rad] P(Si|D,Mi)

1 0.6 7.9 46148.4 20575.0 25.9%

2 20.0 19.9 1576878.8 51811.0 25.2%

3 0.6 4.7 49876.5 12180.6 12.8%

4 21.0 0.0 1658798.6 2.9 12.4%

5 4.1 0.2 321588.6 613.3 15.8%

6 9.0 20.0 709975.9 51901.9 4.9%

7 6.4 14.0 507625.1 36416.7 2.9%

8 57.9 13.7 4569782.8 35717.2 0.1%
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Figure 5.3. Posterior distribution for case study #1 

Figure 5.3 presents the graphical representation of P(|D) and the location of the 

local maxima. The existence of multiple maxima indicates that different set of parameters 

can provide a numerical model that represents the structure. The top 2 solutions in Table 

5.2 have very similar probability, being both physically different. Several solutions have 

low values of kx, some of them with the lower probability values, and some of those 

solutions make more physical sense given that the attached ball bearing to the support is 

expected to have little resistance to rotation. It is expected that the inclusion of the 

analyst’s expertise using a prior PDF changes these probabilities associated with each 

solution. This is performed by the virtual response described in the following section. 

5.3.1. VIRTUAL RESPONSE 

The behavioral selection methodology presented in chapter 3 is used to help the 

analyst add additional information and better estimate the probability of each of the 

solutions found in Table 5.2. The numerical model for case study 1 considers springs to 

model the supported nodes and thus deformation on such nodes can be expected. 
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Therefore, the expected displacement and rotation due to a static force can be considered 

as a virtual experiment. The analyst believes that a 100N force applied at node 10 will 

cause a deformation of about 1mm based on prior experience with this structural system. 

Node 13 will deform approximately 5/100 mm. Therefore, the resulting rotation of node 

13 is estimated as  

13 = arctan((1-0.05)/830) = 0.066
o
 = 0.001 rad 

 
 

Figure 5.4. Virtual experiment: Expected deformation of node 13  

Considering the estimated information as mean values of the virtual experiment, 

and assuming that the deformation of node 13 under the given load follows a normal 

distribution with standard deviations of 1/5000 of the mean values, a probability density 

distribution P(z13,13) expressing the analyst expertise can be obtained: 

 (  )  
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The previous expression denotes the Multivariate Normal Distribution, where µ 

denotes the mean values for the deformations expected from the virtual experiment, and 

Ʃ denotes the covariance matrix of these deformations. In this case, the analyst dismisses 

any correlation between the variables, and expresses the covariance matrix in terms of the 

expected standard deviations mentioned in the previous paragraph. 

k
x

 

k
uz
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13 
16 
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Node 13
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The expression P(VR|) is obtained as shown in chapter 3 and it is described by 

the equation  
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P(VR|) is shown in Figure 5.6, and the updated PDF P(|D,VR) is shown in 

Figure 5.7: 

 
 

Figure 5.5. Analyst’s virtual response, P(VR): expected nodal deformation  

at node 13, case study #1 

 

 
 

Figure 5.6. Analyst’s virtual response P(VR|:{kuz,kx}) for case study #1 
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Figure 5.7. P(|D,VR) for case study #1 

Figure 5.7 shows that all 8 possible alternatives for the model updating problem 

have substantially changed their probability, all in favor of solution #4, as can be seen in 

Table 5.3: 

Table 5.3. Updated probability for model updating solutions in 2D problem 

 

# kuz/(kuz)o kx / (kx)o P(Si|D,Mi) P(Si|D,VR,Mi)

1 0.6 7.9 25.9% 0.0%

2 20.0 19.9 25.2% 3.2%

3 0.6 4.7 12.8% 0.0%

4 21.0 0.0 12.4% 94.7%

5 4.1 0.2 15.8% 0.1%

6 9.0 20.0 4.9% 1.0%

7 6.4 14.0 2.9% 0.9%

8 57.9 13.7 0.1% 0.0%
 

Case study #1 illustrates that including a virtual response can significantly change 

the probability of all possible solutions for the model updating problem. Solution #4 has 

the biggest probability change from P(S4|D,Mi) = 12.4% to P(S4|D,VR,Mi) = 94.7% . 

Physically this might be the most meaningful solution, indicating a small (or no) stiffness 
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in the rotation about the x-axis, and a large stiffness in the displacement in the z-

direction. This corresponds to having a pin-join at the supports. Also, it can be noticed 

that the solutions can be biased if the analyst does not pay particular attention to the 

estimation of the virtual response.  

Table 5.4. Case study #1 metrics 

 

Si m1 m2 m3 m4 m5 m6 m7

1 4.287 1.748 -2.184 0.188 0.023 -1.547 6

2 5.000 N/A N/A 0.200 N/A N/A 8

3 3.774 1.933 -1.018 0.183 0.030 -1.360 5

4 2.668 2.506 -0.029 0.135 0.086 -0.671 4

5 3.596 2.117 -0.904 0.147 0.084 -1.015 5

6 4.964 0.101 -2.268 0.179 0.060 -2.268 7

7 4.720 0.660 -2.126 0.156 0.082 -1.172 6

8 4.827 0.320 -1.171 0.157 0.080 -1.237 6
 

Table 5.3 shows that solutions 1 and 2 have the highest probability prior the 

inclusion of the analyst’s expertise, but the metrics for this study case in Table 5.4 

indicate that these solutions have a low performance predicting the changes of the 

modified system. Solution 1 can only match 2 modes with MAC values greater than 0.8 

and average error in natural frequencies less than 5Hz (M7 = 6). Solution 2 can’t even 

pair one mode, making not available the computation of the metrics (M7 = 8). Solution 4, 

having the highest probability after the inclusion of the analyst’s expertise, has the best 

performance within the group of solutions with 4 modes matching within error constrains 

(M7 = 4). Also, this solution has the lowest average errors in this group of solutions (M1 = 

2.668, M4 = 0.135) agreeing with the analyst’s expected behavior.  

5.4. CASE STUDY #2  

The previous case is extended to consider 6 parameters: one variable describing 

the effective length of the 12 beams in the x-direction (Lef1), one variable describing the 
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effective length of the 12 beams in the y-direction (Lef2), one variable for the lumped 

masses at the connections with 3 elements LM3, one variable for the lumped masses of 

connections with 4 elements  LM4; and two variables describing the stiffness of the 

springs representing the supports of the structure (kuz, kx), as shown in Figure 5.2 

(Parameters 2, 3, 4, 5, 7 and 8 from Table 5.1) and repeated here for convenience. 

 
 

Figure 5.8. Numerical model for Case study #2  

The probability distributions P(|D), P(VR|) and P(|D,VR) are recalculated using 

these 6 parameters and the virtual response described in section 5.3.1. HTMGA is used 

for the search of points of maximum probability density in P(|D). The solutions obtained 

from HTMGA and their respective probabilities are shown in Table 5.5.  

Table 5.5. Case study #2 solutions  

 

Si P(Si|D) P(Si|D,VR) Lef1/(Lef1)o Lef2/(Lef2)o kuz/(kuz)o kx / (kx)o LM3/(LM3)o LM4/(LM4)o

1 3.2% 0.0% 0.895 1.000 0.380 0.191 1.497 0.720

2 2.3% 0.0% 0.895 0.998 0.327 0.020 1.479 0.889

3 14.4% 0.8% 0.810 0.941 3.389 0.087 1.484 1.156

4 41.7% 80.2% 0.675 0.951 3.308 0.169 1.429 1.091

5 31.7% 3.0% 0.992 0.753 11.561 8.068 1.405 1.409

6 3.8% 14.7% 0.996 0.983 37.308 9.463 0.673 0.971

7 0.7% 1.3% 0.994 0.868 8.071 7.897 1.468 0.550

8 2.3% 0.0% 0.911 0.975 1.465 6.642 1.317 1.494

9 0.0% 0.0% 0.937 0.981 0.652 5.198 1.319 1.252
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Table 5.5 shows the probability associated with every solution, and Table 5.6 

shows the actual values for the updating parameters. Prior to the inclusion of the analyst’s 

expertise, solutions 4 and 5 had the biggest probabilities within the family of solutions, 

with 41.7% and 31.7% respectively. The probability of solution 4 increases to 80.2% 

after including the virtual response. The probability of solution 5 decreased to 3.0%. 

Clearly, the inclusion of the analyst’s expertise in terms of a probability distribution 

P(|VR) has substantially changed the probability of the solutions. 

Table 5.6. Parameters’ actual values for case study #2 solutions 

 

Si Lef1 [m] Lef2 [m] kuz [N/m] kx [N/rad] LM3 [Kg] LM4 [Kg]

1 0.361 0.830 29952.6 496.7 4.693 2.588

2 0.361 0.829 25798.1 52.2 4.636 3.196

3 0.326 0.781 267427.8 225.4 4.651 4.154

4 0.272 0.789 261031.4 438.5 4.477 3.919

5 0.400 0.625 912362.1 20963.9 4.404 5.064

6 0.401 0.816 2944107.8 24590.3 2.111 3.487

7 0.401 0.721 636902.5 20519.5 4.600 1.976

8 0.367 0.810 115619.7 17258.5 4.129 5.368

9 0.378 0.814 51440.0 13506.8 4.134 4.499
 

 

 
 

Figure 5.9. Case study #2 - Parallel plot 

Arguably, solution 4 is more physically meaningful than the other solutions. The 

rotational stiffness at the supports is low, which is expected due to the bearings used at 
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the support plates. Also, the vertical stiffness at the supports is higher than other solutions 

(solutions 1, 2 and 9), which is expected because of the plates used for the supports. In 

addition, the effective length of the elements changes according to the length of the 

elements. The rods on the connections are expected to have a greater effect on the short 

elements since a greater portion of the element is used for the connection. Therefore the 

effective length is expected to change more in the short elements. This is exactly what 

solution 4 indicates. 

Table 5.7. Case study #2 metrics 

 

Si m1 m2 m3 m4 m5 m6 m7

1 4.059 1.852 -1.522 0.182 0.046 -2.238 6

2 4.386 1.736 -2.268 0.183 0.047 -2.268 7

3 4.393 1.718 -2.268 0.176 0.067 -2.268 7

4 4.392 1.721 -2.268 0.176 0.067 -2.268 7

5* 5.000 N/A N/A 0.200 N/A N/A 8

6 4.946 0.101 -1.311 0.152 0.088 -1.156 6

7 4.626 0.949 -2.220 0.154 0.084 -1.168 6

8 3.935 1.942 -1.185 0.170 0.047 -0.976 5

9 3.727 1.990 -1.032 0.183 0.032 -1.378 5
 

The metrics in Table 5.7 show how each solution tracks the case when additional 

mass has been added to the structure.  This is a significant example because models that 

have been updated and have physically meaningful parameters are expected to perform 

better in the prediction of the behavior of the structure with the additional mass. Solution 

8 has the best prediction of the model with an average error of M1 = 3.93 for the natural 

frequencies and M4 = 0.17 for the mode shapes. Solution 4 ( ( |    ) = 80.2%) can be 

considered the second solution with best performance with a good balance between the 

error of the natural frequencies (M1 = 4.39) and mode shapes (M4 = 0.176) compared 

with the other solutions. Solution #5 ( ( | ) = 31.7%) shows an incapability of 
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predicting the modal parameters of the modified system (M7 = 8). After the inclusion of 

the virtual response the probability of solution 5 drops to 3%, as expected by the analyst. 

5.5. CASE STUDY #3 

The third numerical model considers bar elements of length 10cm interconnecting 

the cylindrical sections and the nodes (Figure 5.10). The model consists of 76 beam 

elements, 52 of which represent the connecting threaded bars and 24 beam elements 

representing the cylindrical sections. The supports are no longer modeled as springs but 

as pinned nodes. The values of the lumped masses at the nodes are considered 

deterministic and no updating is performed on these parameters. Three updating 

parameters are selected for updating: i) contributed flexural stiffness EI from bars 

connected at supporting nodes (elements 1 through 12), ii) contributed flexural stiffness 

EI from bars connected at 3-element intersections (elements 13 through 36) and iii) 

contributed flexural stiffness EI from bars connected at 4-element intersections (elements 

37 through 52). The probability distributions P(|D), P(VR|) and P(|D,VR) are setup in 

terms of the selected 3 updating parameters. The HTMGA optimization technique is used 

to search for model updating to the study case #3 model updating problem. 

 
Figure 5.10. Types of connections considered in case study #3 

a. Connection at  b. 3-Element    c. 3-Element  d. 4-Element 

    corner      connection (x-dir)     connection (y-dir)     connection 
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Table 5.8. Solutions for case study #3 

 

# P(Si|D) P(Si|D,VR) EI2/(EI2)o EI3/(EI3)o EI4/(EI4)o

1 81.4% 84.2% 0.465 0.179 0.825

2 10.4% 6.7% 0.804 0.420 0.449

3 2.2% 3.8% 1.480 0.980 0.142

4 4.6% 4.0% 0.354 0.424 0.484

5 1.3% 1.1% 1.267 0.295 0.618

6 0.1% 0.0% 1.477 0.429 0.354

7 0.1% 0.3% 0.078 0.090 1.464
 

 

 
 

Figure 5.11. Case study #3 solutions - Parallel plot 

Table 5.8 shows the solutions to the case study #3 and the associated 

probabilities, and Table 5.9 shows the actual values for the updating parameters. Table 

5.8 shows that solution #1 has a probability of 81% and the inclusion of the analyst’s 

expertise increased the probability to 84.2%. The solution shows that the estimated 

flexural stiffness of the nodes is higher than the actual values (all parameters are smaller 

than 1 in Table 5.8). This can be expected given that in all nodes only one bar can cross 

the node while the other connecting bars are interrupted (Figure 5.10). This condition lets 

the node to rotate more than it would do it the connection were continuous and thus, 

makes sense to expect less contributed stiffness from the interrupted bars.  

Table 5.9. Parameters’ actual values for case study #3 solutions 
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# EI2 [N*m
2
] EI3 [N*m

2
] EI4 [N*m

2
]

1 3593.4 1386.2 6370.8

2 6206.8 3242.6 3466.2

3 11429.3 7569.3 1099.1

4 2731.4 3277.5 3738.3

5 9788.6 2278.3 4773.7

6 11409.4 3311.6 2735.0

7 603.3 695.8 11306.4
 

 

Table 5.10. Metrics for case study #3 

 

Si m1 m2 m3 m4 m5 m6 m7

1 3.759 2.298 -1.155 0.155 0.083 -1.173 6

2 3.981 1.931 -1.303 0.155 0.083 -1.163 6

3 4.379 1.626 -2.245 0.161 0.074 -1.292 6

4 2.642 2.133 0.140 0.141 0.078 -0.978 3

5 4.005 1.917 -1.405 0.155 0.083 -1.162 6

6 4.122 1.734 -1.539 0.156 0.082 -1.164 6

7 3.240 2.250 -0.514 0.136 0.076 -0.497 4
 

The metrics presented in Table 5.10 show how study case #3 performs predicting 

the behavior of the modified system. For this case, solutions 4 and 7 have the best 

performance showing an average error in natural frequencies M1=2.642 and 3.240 

respectively, an average error in mode shapes M4 = 0.141 and 0.136 respectively, and a 

number of unmatched modes M7 = 3 and 4 respectively. The solution with highest 

probability shows M1 = 3.759 and M4 = 0.155. This shows that, although these solutions 

performs very well, the virtual response introduced by the analyst filtered proposed that 

solution #1 had a better physical sense that the other ones. Solution 7 shows parameters 

values close to zero, while solution 4 shows that stiffness at the nodes with 3 and 4 

connections have a similar stiffness, which might not be true, as shown in the histograms 

in the annexed chapter (Figure A.19 through Figure A.24) where the histograms for 

solution #1 show to make better distribution around the experimental values. 
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5.6. CASE STUDY #4 

Case study #4 is derived from case study #3. Here, 4 different types of 

connections (Figure 5.10) are considered: parameter 1 considers the stiffness EI 

contributed for the elements to the nodes at the supports, parameters 2 and 3 consider the 

stiffness EI contributed to the nodes connecting 3 elements in the x-direction and y-

direction respectively, and parameter 4 considers the contributed stiffness EI to the nodes 

connecting 4 elements (parameters 9 through 12 from Table 5.1). This selection of 

parameters attempts to correct errors by unknown parameters as shown in case study #3. 

P(|D), P(VR|) and P(|D,VR) are recalculated in terms of the selected 4 updating 

parameters, and the updating solutions found with HTMGA are shown in Table 5.11:  

Table 5.11. Solutions for case study #4 

 

# P(|D) P(|D,VR) EI1/(EI1)o EI2/(EI2)o EI3/(EI3)o EI4/(EI4)o

1 44.1% 45.0% 1.499 0.108 0.055 0.464

2 17.2% 16.5% 0.839 0.624 0.136 0.447

3 20.0% 19.4% 1.098 0.610 0.207 0.453

4 17.3% 15.7% 1.009 0.577 0.819 0.441

5 1.0% 2.3% 1.312 1.498 1.442 0.535

6 0.3% 0.9% 0.501 1.492 1.488 0.553

7 0.1% 0.1% 0.219 0.054 0.465 0.455  

The solutions to case study #4 in Table 5.11 show solution 1 with probability of 

45% and solutions 2, 3 and 4 with probability values of 16.5%, 19.4% and 15.7%. By 

considering again that in all nodes only one bar can cross the node while the other 

connecting bars are interrupted (Figure 5.10) letting the nodes to rotate more than it 

would do it with a connection in both directions, the contributed stiffness to the nodes 

should be smaller than the estimated values in all parameters. Solution 1 shows 3 

parameters with values smaller to 1, while the remaining parameter is higher than 1. This 
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might show that this solution is not making a good physical meaning, opposite to what 

solution #2 shows, where all parameter values are smaller to 1 and consistent with the 

observed in case study #3. 

Table 5.12. Parameters’ actual values for case study #3 solutions 

 

# EI1 [N*m
2
] EI2 [N*m

2
] EI3 [N*m

2
] EI4 [N*m

2
]

1 11578.1 832.3 422.5 3581.1

2 6482.0 4820.2 1048.1 3451.8

3 8484.9 4709.8 1599.3 3496.5

4 7797.3 4455.3 6329.2 3407.5

5 10136.5 11572.1 11139.4 4133.7

6 3867.5 11526.8 11492.3 4273.6

7 1692.4 415.9 3595.3 3516.1  
 

Table 5.13. Metrics for case study #4 

 

Si m1 m2 m3 m4 m5 m6 m7

1 3.756 2.303 -1.155 0.156 0.081 -1.178 6

2 3.973 1.949 -1.314 0.155 0.083 -1.163 6

3 3.975 1.951 -1.333 0.155 0.083 -1.163 6

4 3.983 1.933 -1.324 0.155 0.083 -1.163 6

5 4.419 1.615 -2.267 0.155 0.083 -1.160 6

6 4.426 1.596 -2.267 0.155 0.083 -1.162 6

7 3.826 2.173 -1.156 0.157 0.080 -1.218 6
 

Metrics 1 through 7 shown in Table 5.13 show that although all solutions have a 

similar performance, solution #1 having the highest probability (45%) has the metrics 

with better values among all solutions. It can be noticed that in this problem solutions 1 

to 4 have significant values of probability (45%, 16.5%, 19.4% and 15.7%), and the 

metrics 1 to 4 have also significant values when compared with all solutions. The virtual 

response has improved the probability of the solution #1 which makes the best physical 

sense as noticed in the annexed figures (Figure A.25 through Figure A.30). 
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Figure 5.12. Case study #4 solutions - Parallel plot 

5.7. SOLUTION SELECTION USING A FAMILY OF MODELS 

Cases #2, #3 and #4 considered different parameters. Therefore, it is possible to 

compare each of the solutions found considering the complete family of models. 

According to the expression presented in 0, a family of models can be compared using 

the expression 

 (  |      )

 (  |      )
 
 (  |     ) ( |     ) (  | )

 (  |     ) ( |     ) (  | )
 

The normalization constants for P(|D) and P(|D,VR) are required for every case 

study  as discussed in section 3.4. A numerical integration is required to estimate each of 

these constants. Monte-Carlo integration (Robert, Casella et al. 1999) is used for the 

estimation of such constants. The technique computes integral of the function f() as  

  ∫  ( ̅)  ̅
 

 

Given that I is a definite integral, the volume enclosing f( ̅) can be  
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  ∫   ̅
 

 

where [ ̅1,  ̅2,  ̅3, …,  ̅N]    represent uniform samples taken from the known 

volume V. The integral I can be approximated as 

      
 

 
∑ ( ̅ )

 

   

 

The previous expression is true based on the law of large numbers. This means 

that as bigger the sample size N chosen, the closest to the actual value of the integral: 

   
   

     

The error in the computation of I can be measured in terms of the standard 

deviation of QN as  

 (  )  
 

√ 
 ( ( ̅)) 

 (  ) shows that the standard deviation of the approximation of the integral is 

bounded by number of samples used, and tends to be zero as N tends to infinity. Given 

that obtaining a value for  (  ) close to zero is computationally expensive, the integral 

values for P(|D) and P(|D,VR) are calculated by taking enough uniform samples to 

obtain a ratio  (  )/   less than 2%.  

Table 5.14 shows how the inclusion of the virtual response has significant effect 

on the probability of the models. Case study 6D has the highest probability and therefore 

seems to be the most “correct” of all of them prior to the inclusion of the virtual response. 

After the inclusion of the analyst’s expertise, the probability of all models substantially 

changes making the cases 3D and 4D the models with the highest chances to be the 

correct model, being case study #3 the one with highest probability (52.0%).  
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Table 5.14. Normalization constants 

 

#2 #3 #4

# Samples 18757494 22901043 7242500

QN 0.0577 0.0024 0.0025

(f()) 0.9463 0.0196 0.0212

(QN) 0.0002 0.0000 0.0000

(QN)/QN 0.0038 0.0017 0.0031

QN Ratios 0.9214 0.0381 0.0405

QN 0.0244 0.1437 0.1084

(QN) 0.0003 0.0002 0.0003

(QN)/QN 0.012 0.002 0.003

QN Ratios 0.0882 0.5198 0.3919

Study Case

P
( 

|D
)

P
( 

|D
,V

R
)

 

It’s important to notice the different type of modeling errors addressed by each 

model. Case #2 considers errors in lumped masses, effective length of elements and 

stiffness of supports, while cases #3 and #4 address uncertainty in flexural stiffness EI at 

the connections. The inclusion of the virtual response tells that cases #3 and #4 make a 

better reduction of uncertainty, reflected in the higher probability for these models.  

Table 5.15. Family of models comparison  

 

Si P(Si|D,M ) P(Si|D,VR,M ) Si P(Si|D,M ) P(Si|D,VR,M ) Si P(Si|D,M ) P(Si|D,VR,M )

1 2.9% 0.0% 1 3.1% 43.8% 1 1.8% 17.6%

2 2.1% 0.0% 2 0.4% 3.5% 2 0.7% 6.5%

3 13.3% 0.1% 3 0.1% 2.0% 3 0.8% 7.6%

4 38.5% 7.1% 4 0.2% 2.1% 4 0.7% 6.2%

5 29.2% 0.3% 5 0.0% 0.6% 5 0.0% 0.9%

6 3.5% 1.3% 6 0.0% 0.0% 6 0.0% 0.4%

7 0.6% 0.1% 7 0.0% 0.1% 7 0.0% 0.1%

8 2.1% 0.0%

9 0.0% 0.0%

Study Case #2 Study Case #3 Study Case #4

 

Table 5.15 compares how the probabilities of all solutions changes prior and after 

the inclusion of the virtual response. If the analyst has equal degree of belief on each 

model, i.e., P(Mi) = 1/3 for each model Mi, the solution #1 from study case #3 (3D 
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problem) has the highest probability (43.8%) among all available solutions. This was not 

the case prior to the inclusion of the virtual response, where the solution with highest 

probability is solution #3 from study case #2 (6D problem). The probability associated to 

each solution reflects their physical meaning and solutions can be selected based on this 

criterion. 

The performance of the updated models is evaluated by taking the solutions with 

highest probability from each study case. The solutions are sampled using the Gibbs 

Sampling methodology and the samples are used to simulate the behavior of the modified 

system (Test structure with added mass of 8.68kg). Histograms of natural frequencies and 

MAC values for vibration modes 1, 2 and 3 evaluate the prediction capabilities of each 

solution. 

 
 

Figure 5.13. Probabilities for solutions with highest probabilities  
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Figure 5.14. Gibbs’ sampling for solution #4, study case #1 

(Red dot indicates starting sample) 

 

 

 
 

Figure 5.15. Histograms for modes 1, 2 and 3 from Gibbs’ sampling  

(Solution #4, study case #1. Dashed line: Experimental Value. Circle: starting sample) 

Vibration Mode #1  Vibration Mode #2  Vibration Mode #3 
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Figure 5.16. Gibbs’ sampling for solution #1, study case #3 

(Red dot indicates starting sample) 

 

 

 
 

Figure 5.17. Histograms for modes 1, 2 and 3 from Gibbs’ sampling  

(Solution #1, study case #3. Dashed line: Experimental Value. Circle: starting sample) 

Vibration Mode #1  Vibration Mode #2  Vibration Mode #3 
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Figure 5.18. Gibbs’ sampling for solution #1, study case #4 

(Red dot indicates starting sample) 

 

 

 

Figure 5.19. Histograms for modes 1, 2 and 3 from Gibbs’ sampling 

(Solution #1, study case #4. Dashed line: Experimental Value. Circle: starting sample) 

Vibration Mode #1  Vibration Mode #2  Vibration Mode #3 
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From Figure 5.15, Figure 5.17 and Figure 5.19 it can be said that the selected 

solutions from study cases #3 and #4 with probabilities 43.8% and 17.6% have better 

performance predicting the changes in modal parameters of the system, showing good 

prediction of modes 1, 2 and 3. The solution from study case #2 with probability 7.1% 

can only make a good prediction of the first vibration mode, while modes 2 and 3 are not 

well predicted.  
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CHAPTER 6. CONCLUSIONS

The research proposed here introduces a methodology for the selection of solutions in 

probabilistic model updating problems that facilitates the use of engineering judgment. 

As described by (Udwadia and Sharma 1978; Udwadia 1985; Franco, Betti et al. 2006), 

model updating problems are commonly multivariate and ill-conditioned problems. These 

characteristics usually lead to several solutions, some of which might not be physically 

meaningful. 

An expert is defined as a person who can make a judgment based on an extensive 

prior knowledge (Chi, Glaser et al. 1981). The expert must be understood here as 

somebody who has extensive knowledge about structural systems and can perform a 

reasonable estimation of the behavior of a structure in a hypothetical situation.  

Bayes inference allows the addition of prior knowledge in the prior PDF (P()). 

Theoretically, this PDF can include the expert judgment about the parameters . 

Arguably, in most situations, prior information about the parameters ( is difficult to 

define because the expert has not had direct interaction with the parameter itself. For 

example, it would be difficult for the expert to define a PDF for the stiffness of rubber 

bearings on a bridge that has been in service for a number of years. However, it is easier 

for the engineer to estimate the behavior of the system. For example, estimate the 

deflection of the same bridge under static loading. Therefore, the analyst’s expertise can 

be expressed through a virtual response of the structure. Such virtual response could be 

expressed in terms of a non-deterministic variable (or variables) with an associated 
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uncertainty. Although both cases are valid, the proposed methodology in this research 

focuses on the probabilistic approach. The degree of belief on this virtual response (i.e. 

assumed uncertainty) is then expressed by an estimated PDF. 

The inclusion of the analyst’s expertise into the model updating problem using 

virtual responses has demonstrated to be effective for the selection of solutions. The 

experimental validation (Chapter 5) uses a laboratory structure to explore the capabilities 

of the technique. Results show that the points of high probability in posterior PDF 

without the virtual response (P(|D)) includes values that are not physically meaningful. 

The use of the virtual response (P(|D,VR)) helps the analyst to select parameters and 

models that are physically meaningful and provide a reasonable estimation of the 

behavior of the structure if the system changes. 

The concept of virtual response can be extended to the case where multiple 

models are available, which is a common situation in several fields where numerical 

modeling is required. Uncertainty in the model can be due to modeling errors (i.e. using 

an approximation of the physics of the structure) and uncertainty in the parameters. It 

makes sense then that several models can be required to describe one physical system if 

the source of uncertainty is not clearly identified, which can be the case for most of 

modeling problems in structural engineering. The implementation of a virtual response 

helps the analyst in the selection of appropriate models. 

The formulation of a benchmark problem contributes to disseminate the 

philosophy of MUCogS. This framework intends to encourage researches in the 

evaluation of multiple solutions in non-deterministic problems. Given the non-uniqueness 

of this type of problems, it can be said that few has been done in this area, mostly due to 



www.manaraa.com

88 

the complexity and high computational cost required from simple model updating 

problems. However, new computational resources such as High Performance Computing 

machines and an enhanced cyber-infrastructure enabled by programs like XSEED enable 

this type of research. 
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CHAPTER 7. FUTURE WORK

The proposed methodology is successful for the identification of numerical models with 

parameters that are physically meaningful. However, several considerations can be taken 

in future work: 

a. Expected behavior can also be expressed in terms of a non-probabilistic interval. 

For instance, an interval can be used to indicate what parts of the solution space 

are appropriate based on the expected behavior of the system. Arguably, intervals 

are easier to define than PDFs. The proposed technique could also be extended to 

use intervals to express the analyst’s expertise. 

b. Depending on the type of structural system (shear buildings, frame buildings, 

bridges, etc.), some virtual responses would yield better results than others. A 

methodology to select the appropriate virtual test can be developed. 

c. The number of solutions to a model updating problem obtained with an 

optimization technique depends on the sensor density available for system 

identification. In this document, the sensor density was high, since all 16 degrees 

of freedom of interest were instrumented. However, bigger systems will have low 

sensor density, increasing the number of solutions. This research can be extended 

to consider the effect of variable sensor density on the selection of model 

updating solutions. In this document, P(|D) considered vibration modes whose 

error in natural frequency was not greater that 5Hz, and whose MAC values were 
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at least 0.8. Under a consideration of higher tolerance in these constrains, the 

probability space defined by P(|D) becomes smaller, affecting the number of 

identified solutions in the model updating problem. Future work can take this into 

account and investigate the behavior of the selected solutions based on relaxed 

constrains. 

d. This research defined a “solution” as a hyper-cube around a point with maximum 

P(|D). A methodology to better define the shape and size of the areas of high 

probability is needed. 

 



www.manaraa.com

91 

REFERENCES

Adhikari, S. and M. Friswell (2004). Random eigenvalue problems in structural 

dynamics. Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics & Materials Conference, Palm Springs, California.[Links]. 

Allemang, R. J. (2003). "The modal assurance criterion - Twenty years of use and abuse." 

Journal of Sound and Vibration 37(8): 14-23. 

Ang, A. H.-S., W. H. Tang, et al. (2007). Probability concepts in engineering : emphasis 

on applications in civil & environmental engineering. New York, Wiley. 

Baeza, L. and H. Ouyang (2011). "A railway track dynamics model based on modal 

substructuring and a cyclic boundary condition." Journal of Sound and Vibration 

330(1): 75-86. 

Baranyi, J., C. Pin, et al. (1999). "Validating and comparing predictive models." 

International Journal of Food Microbiology 48(3): 159-166. 

Beck, J. L. and S. K. Au (2002). "Bayesian updating of structural models and reliability 

using Markov chain Monte Carlo simulation." Journal of Engineering Mechanics-

Asce 128(4): 380-391. 

Beck, J. L. and L. S. Katafygiotis (1998). "Updating Models and Their Uncertainties.  I: 

Bayesian Statistical Framework." Journal of Engineering Mechanics 124(4): 455-

461. 

Bendat, J. S. and A. G. Piersol (2000). Random data : analysis and measurement 

procedures. New York, Wiley. 

Box, G. E. and G. C. Tiao (2011). Bayesian inference in statistical analysis, John Wiley 

& Sons. 

Bradford, M. and P. Cuk (1988). "Elastic Buckling of Tapered Monosymmetric I‐
Beams." Journal of Structural Engineering 114(5): 977-996. 

Brill, E. D., S.-Y. Chang, et al. (1982). "Modeling to generate alternatives: The HSJ 

approach and an illustration using a problem in land use planning." Management 

Science 28(3): 221-235. 

Brownjohn, J. and P. Xia (2000). "Dynamic Assessment of Curved Cable-Stayed Bridge 

by Model Updating." Journal of Structural Engineering 126(2): 252-260. 



www.manaraa.com

92 

Brownjohn, J. M. W. and P.-Q. Xia (2000). "Dynamic Assessment of Curved Cable-

Stayed Bridge by Model Updating." Journal of Structural Engineering 126(2): 

252-260. 

Burnham, K. P. and D. R. Anderson (2002). Model selection and multi-model inference: 

a practical information-theoretic approach, Springer. 

Caicedo, J. (2011). "Practical guidelines for the natural excitation technique (NexT) and 

the eigensystem realization algorithm (ERA) for modal identification using 

ambient vibration." Experimental Techniques 35(4): 52-58. 

Caicedo, J. M. and G. Yun (2010). "A novel evolutionary algorithm for identifying 

multiple alternative solutions in model updating." Structural Health Monitoring 

1(11). 

Caicedo, J. M. and B. A. Zarate (2011). "Reducing Epistemic Uncertainty using a Model 

Updating Cognitive System." Advances in Structural Engineering 14(1): 55-65. 

Cheung, S. H. and J. L. Beck (2009). "Bayesian Model Updating Using Hybrid Monte 

Carlo Simulation with Application to Structural Dynamic Models with Many 

Uncertain Parameters." Journal of Engineering Mechanics-Asce 135(4): 243-255. 

Chi, M. T., R. Glaser, et al. (1981). Expertise in problem solving. Pittsburgh, University 

of Pittsburgh. 

Eberhart, R. and J. Kennedy (1995). A new optimizer using particle swarm theory. Micro 

Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth 

International Symposium on, IEEE. 

Estrada, M. A. R. (2011). "Multi-Dimensional coordinate spaces." International Journal 

of the Physical Sciences 6(3): 340-357. 

Fonseca, J. M. R. (2005). Uncertainty in Structural Dynamic Models, University of 

Wales Swansea. Ph.D. 

Fox, D. G. (1981). "Judging Air Quality Model Performance." Bulletin of the American 

Meteorological Society 62(5): 599-609. 

Franco, G., R. Betti, et al. (2006). "On the uniqueness of solutions for the identification 

of linear structural systems." Journal of Applied Mechanics-Transactions of the 

Asme 73(1): 153-162. 

Goldberg, D. E. (1989). "Genetic algorithms in search, optimization, and machine 

learning." 

Goller, B., H. J. Pradlwarter, et al. (2009). "Robust model updating with insufficient 

data." Computer Methods in Applied Mechanics and Engineering 198(37–40): 

3096-3104. 



www.manaraa.com

93 

Helton, J. C., J. D. Johnson, et al. (2006). "Survey of sampling-based methods for 

uncertainty and sensitivity analysis." Reliability Engineering & System Safety 

91(10): 1175-1209. 

Inselberg, A. and B. Dimsdale (1991). Parallel coordinates. Human-Machine Interactive 

Systems, Springer: 199-233. 

Jaynes, E. T. (2003). Probability theory: the logic of science, Cambridge university press. 

Juang, J.-N. and R. S. Pappa (1985). "An Eigensystem Realization Algorithm for Modal 

Parameter Identification and Model Reduction." Journal of Guidance 8(5): 620-

627. 

Karimi, K., M. J. Tait, et al. (2011). "Testing and modeling of a novel FRP-encased 

steel–concrete composite column." Composite Structures 93(5): 1463-1473. 

Kass, R. E. and L. Wasserman (1996). "The selection of prior distributions by formal 

rules." Journal of the American Statistical Association 91(435): 1343-1370. 

Lam, H.-F. (1998). Structural Model Updating And Health Monitoring In The 

PresenceOf Modeling Uncertainties, Hong Kong University of Science and 

Technology: 263. 

Link, M. and M. Weiland (2009). "Damage identification by multi-model updating in the 

modal and in the time domain." Mechanical Systems and Signal Processing 23(6): 

1734-1746. 

Madarshahian, R., J. M. Caicedo, et al. (2013). Using P-Box and PiFE to Express 

Uncertainty in Model Updating. Topics in Model Validation and Uncertainty 

Quantification, Volume 5, Springer: 81-88. 

Marwala, T. and S. Sibisi (2005). "Finite Element Model Updating Using Bayesian 

Framework and Modal Properties." Journal of Aircraft 42(1): 275-278. 

Matott, L. S., J. E. Babendreier, et al. (2009). "Evaluating uncertainty in integrated 

environmental models: A review of concepts and tools." Water Resources 

Research 45(6): W06421. 

Moriasi, D. N., J. G. Arnold, et al. (2007). "Model evaluation guidelines for systematic 

quantification of accuracy in watershed simulations." Transactions of the Asabe 

50(3): 885-900. 

Muhanna, R. L., H. Zhang, et al. (2007). "Interval finite elements as a basis for 

generalized models of uncertainty in engineering mechanics." Reliable 

Computing 13(2): 173-194. 

Papadimitriou, C., J. L. Beck, et al. (2001). "Updating robust reliability using structural 

test data." Probabilistic Engineering Mechanics 16(2): 103-113. 



www.manaraa.com

94 

Parrott, D. and L. Xiaodong (2006). "Locating and tracking multiple dynamic optima by 

a particle swarm model using speciation." Evolutionary Computation, IEEE 

Transactions on 10(4): 440-458. 

Ren, W.-X., Y.-Q. Lin, et al. (2007). "Field load tests and numerical analysis of 

Qingzhou Cable-Stayed Bridge." Journal of Bridge Engineering 12(2): 261-270. 

Robert, C. P., G. Casella, et al. (1999). Monte Carlo statistical methods, Springer New 

York. 

Sanayei, M., S. Wadia-Fascetti, et al. (2001). "Significance of modeling error in 

structural parameter estimation." Computer-Aided Civil and Infrastructure 

Engineering 16(1): 12-27. 

Sharko, J., G. Grinstein, et al. (2008). "Vectorized Radviz and Its Application to Multiple 

Cluster Datasets." IEEE Transactions on Visualization and Computer Graphics 

14(6): 1444 - 1427  

Tarantola, A. (2002). Inverse problem theory: Methods for data fitting and model 

parameter estimation, Elsevier Science. 

Tsai, C. W. and S. Franceschini (2005). "Evaluation of probabilistic point estimate 

methods in uncertainty analysis for environmental engineering applications." 

Journal of environmental engineering 131(3): 387-395. 

Tsai, R. Y. (1987). "A Versatile Camera Calibration Technique for High-Accuracy 3d 

Machine Vision Metrology Using Off-the-Shelf Tv Cameras and Lenses." Ieee 

Journal of Robotics and Automation 3(4): 323-344. 

Udwadia, F. E. (1985). "Some Uniqueness Results Related to Soil and Building 

Structural Identification." Siam Journal on Applied Mathematics 45(4): 674-685. 

Udwadia, F. E. and D. K. Sharma (1978). "Some Uniqueness Results Related to Building 

Structural Identification." Siam Journal on Applied Mathematics 34(1): 104-118. 

Vanik, M. W., J. L. Beck, et al. (2000). "Bayesian probabilistic approach to structural 

health monitoring." Journal of Engineering Mechanics-Asce 126(7): 738-745. 

Venter, G. and J. Sobieszczanski-Sobieski (2003). "Particle swarm optimization." Aiaa 

Journal 41(8): 1583-1589. 

Willmott, C. J. (1982). "Some Comments on the Evaluation of Model Performance." 

Bulletin of the American Meteorological Society 63(11): 1309-1313. 

Wong, K.-Y. (2007). "Design of a structural health monitoring system for long-span 

bridges." Structure and Infrastructure Engineering 3(2): 169-185. 



www.manaraa.com

95 

Wong, P. C. and R. D. Bergeron (1997). "30 Years of Multidimensional Multivariate 

Visualization." IEEE Computer Society Press: 3--33. 

Yuen, K.-V. (2010). "Recent developments of Bayesian model class selection and 

applications in civil engineering." Structural Safety 32(5): 338-346. 

Zarate, B. A. (2009). Alternative solutions and their probabilities for the model updating 

of structural systems. Civil Engineering Columbia, SC, University of South 

Carolina. Doctor of Phylosophy: 122. 

Zarate, B. A. and J. M. Caicedo (2008). "Finite element model updating: Multiple 

alternatives." Engineering Structures 30(12): 3724-3730. 

Zarate, B. A., J. M. Caicedo, et al. (2007). Model updating of cable-stayed bridges using 

MGA. International Modal Analysis Conference (IMAC). Orlando, Florida, SEM. 

Zechman, E. M. and S. R. Ranjithan (2004). "An evolutionary algorithm to generate 

alternatives (EAGA) for engineering optimization problems." Engineering 

Optimization 36(5): 539-553. 

Zhang, Q., T. Chang, et al. (2001). "Finite-Element Model Updating for the Kap Shui 

Mun Cable-Stayed Bridge." Journal of Bridge Engineering 6(4): 285-293. 

 

 



www.manaraa.com

96 

APPENDIX A. EXPERIMENTAL FIGURES 

 
 

Figure A.1. Time responses from test 1 (Hammer impact at node 6) 
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Figure A.2. Time responses from test 2 (Hammer impact at node 6) 
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Figure A.3. Time responses from test 1 (Hammer impact at node 9) 
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Figure A.4. Time responses from test 2 (Hammer impact at node 9) 
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Figure A.5. Time responses from test 1 (Hammer impact at node 11) 
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Figure A.6. Time responses from test 2 (Hammer impact at node 11) 
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Figure A.7. Impulse response functions (IRF) from hammer impact at node 6 
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Figure A.8. Impulse response functions (IRF) from hammer impact at node 9 
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Figure A.9. Impulse response functions (IRF) from hammer impact at node 11 
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Stabilization diagram and Transfer Functions, hit location: node 6
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Figure A.10. Stabilization diagram and Transfer Function plots (Impact at node 6) 
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Stabilization diagram and Transfer Functions, hit location: node 9
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Figure A.11. Stabilization diagram and Transfer Function plots (Impact at node 9)  
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Stabilization diagram and Transfer Functions, hit location: node 11
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Figure A.12. Stabilization diagram and Transfer Function plots (Impact at node 11) 
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Figure A.13. Histograms for natural frequencies (Mode 1), study case #2 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.14. Histograms for mode shapes (Mode 1), study case #2 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.15. Histograms for natural frequencies (Mode 2), study case #2 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.16. Histograms for mode shapes (Mode 2), study case #2 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.17. Histograms for natural frequencies (Mode 3), study case #2 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.18. Histograms for mode shapes (Mode 3), study case #2 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.19. Histograms for natural frequencies (Mode 1), study case #3 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.20. Histograms for mode shapes (Mode 1), study case #3 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.21. Histograms for natural frequencies (Mode 2), study case #3 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.22. Histograms for mode shapes (Mode 2), study case #3 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.23. Histograms for natural frequencies (Mode 3), study case #3 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.24. Histograms for mode shapes (Mode 3), study case #3 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.25. Histograms for natural frequencies (Mode 1), study case #4 

 (Dashed line: Experimental Value. Circle: starting sample) 

 
Figure A.26. Histograms for mode shapes (Mode 1), study case #4 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.27. Histograms for natural frequencies (Mode 2), study case #4 

 (Dashed line: Experimental Value. Circle: starting sample) 

 

 
Figure A.28. Histograms for mode shapes (Mode 2), study case #4 

 (Dashed line: Experimental Value. Circle: starting sample) 
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Figure A.29. Histograms for natural frequencies (Mode 3), study case #4 

 (Dashed line: Experimental Value. Circle: starting sample) 

 

 
Figure A.30. Histograms for mode shapes (Mode 3), study case #4 

 (Dashed line: Experimental Value. Circle: starting sample) 
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